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Abstract 

Background:  DNA methylation arrays are widely used in epigenome-wide association studies and methylation 
quantitative trait locus (mQTL) studies. Here, we performed the first genome-wide analysis of monozygotic (MZ) twin 
correlations and mQTLs on data obtained with the Illumina MethylationEPIC BeadChip (EPIC array) and compared 
the performance of the EPIC array to the Illumina HumanMethylation450 BeadChip (HM450 array) for buccal-derived 
DNA.

Results:  Good-quality EPIC data were obtained for 102 buccal-derived DNA samples from 49 MZ twin pairs (mean 
age = 7.5 years, range = 1–10). Differences between MZ twins in the cellular content of buccal swabs were a major 
driver for differences in their DNA methylation profiles, highlighting the importance to adjust for cellular composition 
in DNA methylation studies of buccal-derived DNA. After adjusting for cellular composition, the genome-wide mean 
correlation (r) between MZ twins was 0.21 for the EPIC array, and cis mQTL analysis in 84 twins identified 1,296,323 
significant associations (FDR 5%), encompassing 33,749 methylation sites and 616,029 genetic variants. MZ twin cor-
relations were slightly larger (p < 2.2 × 10−16) for novel EPIC probes (N = 383,066, mean r = 0.22) compared to probes 
that are also present on HM450 (N = 406,822, mean r = 0.20). In line with this observation, a larger percentage of novel 
EPIC probes was associated with genetic variants (novel EPIC probes with significant mQTL 4.7%, HM450 probes with 
mQTL 3.9%, p < 2.2 × 10−16). Methylation sites with a large MZ correlation and sites associated with mQTLs were most 
strongly enriched in epithelial cell DNase I hypersensitive sites (DHSs), enhancers, and histone mark H3K4me3.

Conclusions:  We conclude that the contribution of familial factors to individual differences in DNA methylation and 
the effect of mQTLs are larger for novel EPIC probes, especially those within regulatory elements connected to active 
regions specific to the investigated tissue.
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Background
The Illumina HumanMethylation450 BeadChip (HM450 
array) [1], which measures DNA methylation at approxi-
mately 485,000 methylation sites (mostly CpG sites), has 
been widely used to measure genome-wide DNA methyl-
ation and was recently replaced by the MethylationEPIC 
BeadChip (EPIC array) [2], which measures DNA meth-
ylation at > 850,000 methylation sites (including ~ 90% 
of sites from the HM450 array). Several validation stud-
ies of the EPIC array have been published that assessed 
the reproducibility of the EPIC array, compared the 
performance of the EPIC array to the HM450 array, or 
compared the performance of the EPIC array to whole-
genome bisulfite sequencing (WGBS) [2–5]. These stud-
ies have reported high correlations (r > 0.9, across all 
CpGs) between replicate samples on EPIC and between 
matched samples measured on HM450 and EPIC (r > 0.9, 
across all overlapping CpGs). A study of whole blood 
indicated that correlations for many individual CpGs 
are fairly low between HM450 and EPIC (r < 0.2 at 55% 
of CpGs) [5], due to the low variance of methylation 
levels of most CpGs. However, replication of trait-asso-
ciated CpGs across the HM450 and EPIC arrays has 
been reported for cancer-associated differential meth-
ylation [3], CpGs associated with maternal smoking [6], 
C-reactive protein (CRP) [5], and the epigenetic clock 
[5]. Validation studies have been performed for DNA 
derived from a variety of different samples, including 
primary normal colon [2], primary sorted neurons [2], 
renal cancer [2], a transformed prostate cancer cell line 
[3], primary cultures of prostate epithelial cells [3], can-
cer-associated fibroblasts and non-malignant tissue-asso-
ciated fibroblasts [3], pediatric brain tumors [4], infant 
blood from Guthrie cards [3], and whole blood [5]. Thus 
far, no study has been published on EPIC data generated 
with DNA derived from buccal swabs, which may be 
used as a surrogate tissue in epigenome-wide association 
studies of human traits and in studies of genetic variants 
that influence DNA methylation.

Methylome-wide studies in monozygotic (MZ) and 
dizygotic (DZ) twins are performed to obtain insight into 
the extent to which DNA methylation levels are influ-
enced by genetic, environmental and stochastic influ-
ences or to identify loci where methylation differences 
between twins are associated with discordance for traits 
[7]. MZ (identical) twins have nearly identical DNA 
sequences, although they may differ with respect to post-
zygotic somatic mutations [8–10]. Their DNA meth-
ylation profiles show differences in multiple tissues that 
are already detectable at birth, and these difference may 
increase with age [11–14]. We, and others, have previ-
ously used the HM450 array to assess genome-wide DNA 
methylation in buccal swabs from twins [15, 16]. In our 

previous study, we assessed DNA methylation in buccal 
swabs from ten monozygotic (MZ) pairs (age 8–19) and 
found that the correlation between methylation values of 
MZ twins at individual CpGs varies across the genome, 
with a mean across all CpGs on the HM450 array of 0.31 
[16]. Correlations between MZ twins provide an indica-
tion of the relative importance of familial factors (genetic 
variation and shared environment) versus the impor-
tance of environmental and stochastic influences to 
inter-individual variation in methylation levels. Previous 
methylation QTL (mQTL) studies of tissues including 
whole blood, adipose, lung, and brain have shown that 
methylation sites interrogated by the HM450 array show 
widespread associations with common genetic variants 
[17–20]. To our knowledge, such studies have not yet 
been performed for buccal-derived DNA or for the EPIC 
array.

In the current study, we measured DNA methylation 
with the EPIC array in 107 buccal samples from MZ 
twins (including 10 samples that were previously assessed 
on HM450 [16]) with the aim to examine the sources of 
individual differences in DNA methylation obtained with 
EPIC and to validate the EPIC array in comparison with 
the HM450 array for buccal DNA samples. To this end, 
we examined: (1) the cellular content of buccal swabs 
based on DNA methylation profiles [21]; (2) the cor-
relation between replicate measures of samples on the 
EPIC array and the correlation between samples meas-
ured on the EPIC and HM450 array (based on the com-
mon CpGs); (3) the correlation between MZ twins for 
genome-wide DNA methylation levels and for individual 
CpGs assessed by the EPIC array, the effect of variation in 
cellular proportions on MZ twin correlations and differ-
ences, and the reproducibility of methylation differences 
between MZ twins across different EPIC arrays; and (4) 
the effect of mQTLs in cis.

Results
Variation in cellular content of buccal swabs
The cellular content of buccal swabs was estimated based 
on methylation profiles with Hierarchical Epigenetic Dis-
section of Intra-Sample-Heterogeneity (HepiDISH); a 
reference-based cell-type deconvolution algorithm [21]. 
Predicted epithelial cell percentages ranged from 57.6% 
to 96.7% (mean = 79.6%, Fig. 1a). Estimates for fibroblasts 
were zero for all samples as expected. Estimates of epi-
thelial cell proportions derived by HEpiDISH correlated 
strongly with estimates derived by a different method by 
Eipel et al. [22] (r = 0.97, p value < 2.2 × 10−16). However, 
HEpiDISH seemed to provide additional discrimination 
in the higher range of epithelial cell percentages com-
pared to the method by Eipel et al. (Fig. 1b) and has the 
advantage that it also allows to estimate proportions of 
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leukocyte sub-types. HepiDISH estimates indicated that 
neutrophils were the most frequent leukocyte sub-type in 
buccal swabs (mean = 7.4%, range = 0.5–24.0%), followed 
by lymphocytes (B cells: mean = 3.2%, natural killer cells: 
mean = 3.4%, and CD4 + T cells: mean = 2.1%), and 
monocytes (mean = 4.0%). This pattern is comparable to 
findings from a microscopy-based method that counted 
broad classes of leukocytes in buccal swabs [23]. Esti-
mates of CD8 + T cells and eosinophils were virtually 
zero.

Density plots illustrate that samples with different 
epithelial cell proportions show distinct genome-wide 
methylation profiles (Fig. 1c), and epithelial cell propor-
tion correlated nearly perfectly (r = −  0.99) with princi-
pal component 1 (PC1) obtained by principal component 
analysis (PCA) on the genome-wide DNA methylation 
data. Epithelial cell proportions correlated moderately 
between MZ twins (r = 0.51 p = 1.8 × 10−4), which may 
reflect familial influences on adherence to the buccal 
swab collection protocol and familial influences on cells 
that are present in the mouth.

Reproducibility of genome‑wide methylation profiles 
on EPIC and comparison to HM450 array
For two individuals (MZ twins), a DNA sample was 
measured twice on EPIC using different BeadChip arrays 
to examine technical reproducibility of the EPIC array. 
Correlations between replicate samples on EPIC utiliz-
ing methylation β-values across 789,888 methylation 
sites were similar to previously published replicate cor-
relations for DNA from other tissues (r = 0.9964 and 
r = 0.9976, Fig. 2a, b, Table 1) [3].

Next, we compared data obtained with the EPIC array 
to data obtained with the HM450 array for 10 DNA 
samples that were measured on both arrays. As pre-
viously observed in other tissues [3], the novel EPIC 
CpGs more often show intermediate methylation or 

hypermethylation (Fig.  2c) compared to CpGs that are 
common to EPIC and HM450 (Fig.  2d). We computed 
the correlation between methylation values of matched 
samples on EPIC and HM450 based on the overlapping 
CpGs. For all ten samples, DNA methylation profiles 
obtained by the different platforms correlated strongly 
(mean r = 0.9942, range = 0.9923–0.9954, Additional 
file  1: Figure S1), although not as strongly as two repli-
cates on the EPIC array.

Importantly, correlations based on genome-wide 
methylation β-values were also large for pairs of DNA 
samples from unrelated subjects (mean r = 0.9858, 
range = 0.9451–0.9945), which also has been reported 
previously. Therefore, we also computed Pearson correla-
tions between the normalized β-values that were stand-
ardized (z-scores) prior to computing the correlation 
(Table  1). While the correlations between unstandard-
ized β-values are greatly influenced by the many CpGs 
with β-values close to the extremes (0 or 1), correlations 
between standardized β-values are not affected by this 
and are better suited to obtain a measure of the correla-
tion between genome-wide DNA methylation profiles. 
Comparing the correlations based on standardized meth-
ylation β-values, we found that correlations were strong-
est between replicate samples on EPIC (mean r = 0.3972), 
followed by matched samples on EPIC and HM450 
(mean r = 0.3064) and correlations between MZ twins 
(mean r = 0.3113), and correlations between DNA sam-
ples from unrelated subjects on EPIC were lowest (mean 
r = − 0.0109).

Genome‑wide resemblance of MZ twins
Correlations for MZ pairs between genome-wide meth-
ylation β-values of twins obtained with the EPIC array 
were similar to previously published correlations based 
on HM450 (mean r = 0.9932, Fig.  3a–c) [16]. Correla-
tions for MZ pairs based on standardized methylation 

Fig. 1  Cellular proportions of buccal swabs. a Estimated cellular proportions by HepiDISH. Epi = Epithelial cells, Fib = Fibroblasts, B = B cells, 
NK = natural killer cells, CD4T = CD4 + T cells, CD8T = CD8 + T cells, Mono = monocytes, Neutro = neutrophils, Eosino = eosinophils. b Epithelial 
cell proportions estimated by the method described by Eipel et al. and by EpiDISH. c Density plot of genome-wide methylation values of samples 
measured on EPIC, colored by epithelial cell % (categorized into 5 groups)
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values (mean r = 0.3113) tended to be lower than corre-
lations between replicates (same DNA sample ran twice 
on EPIC), although for 14 pairs (29%), genome-wide 
methylation profiles of co-twins correlated as strongly 
as replicate measures of the same DNA (based on the 

comparison of the MZ twin correlation to the mean cor-
relation of the two replicate pairs, Fig. 3d, Table 1). Abso-
lute within-pair differences in epithelial cell proportion 
of MZ twins showed a strong negative correlation with 
MZ twin correlations of genome-wide methylation values 

Fig. 2  Methylation profiles of replicate samples on EPIC and matched samples on EPIC and HM450. a, b Scatterplots of methylation β-values of 
replicate samples from two individuals on EPIC. c, d Density plot of genome-wide DNA methylation values for ten buccal DNA samples that were 
assessed on EPIC and HM450.c Density plot of methylation probes that are unique to EPIC. d Density plot of methylation probes that are common 
to EPIC and HM450, for the same samples. Orange = HM450 arrays, green = EPIC arrays

Table 1  Correlations between samples based on genome-wide DNA methylation profiles

Comparison Pearson r Spearman rho Pearson r, standardized beta-
values

Mean Min Max Mean Min Max Mean Min Max

Replicates on EPIC (2 pairs) 0.9970 0.9964 0.9976 0.9922 0.9917 0.9927 0.3972 0.3004 0.4941

Matched samples on EPIC and HM450 (10 pairs) 0.9942 0.9923 0.9954 0.9790 0.9768 0.9806 0.3064 0.0931 0.4372

MZ twins on EPIC (49 pairs) 0.9932 0.9797 0.9979 0.9884 0.9758 0.9938 0.3113 − 0.0786 0.7288

Unrelated pairs of samples on EPIC (1176 pairs) 0.9858 0.9451 0.9945 0.9810 0.9522 0.9902 − 0.0109 − 0.5118 0.4765
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Fig. 3  Genome-wide methylation profiles of MZ twin pairs based on buccal-derived DNA measured on the EPIC array. a Scatterplot showing 
genome-wide methylation β-values of co-twins of 1 exemplary twin pair (median correlation). b Scatterplot showing genome-wide methylation 
β-values of co-twins of 1 exemplary twin pair (lowest correlation). c Scatterplot showing genome-wide methylation β-values of co-twins of 1 
exemplary twin pair (highest correlation). d Histogram of correlations between samples from: MZ twins (purple), unrelated subjects (green), 
and replicates (same DNA sample run twice on EPIC; blue lines). e The correlation between genome-wide methylation values of twins (r, y  axis) 
is plotted against the absolute within-pair difference in epithelial cell percentage % (x axis). Samples are colored by age at DNA collection. f 
Relationship between the number of CpGs with a methylation difference > 30% between MZ twins (y axis) and within-pair difference in proportion 
of epithelial cells(x axis). Colors denote the mean proportion of buccal cells of the two twin samples. g Within-pair differences in one MZ twin pair 
assessed twice on EPIC (technical replicates). The scatterplot shows two replicate measures of the within-pair difference of this twin pair. Horizontal 
and vertical lines indicate within-pair difference greater than 30%. h Venn diagram of the overlap across four replicate measures (rep1–rep 4) of 
within-pair methylation differences > 0.3 detected in one MZ twin pair assessed twice on EPIC array
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(r = − 0.94, p = 2.2 × 10−16, Fig. 3e), indicating that dif-
ferences in cellular content of buccal swabs are a major 
driver of differences between MZ twins in methylation 
profiles.

Frequency and reproducibility of methylation differences 
within MZ pairs
For each MZ pair, we computed the within-pair differ-
ence in methylation β-values and counted the number 
of large differences (CpGs with a methylation difference 
larger than 30%). On average, 286 of such differences 
were observed per twin pair (median = 93, range 7–3051). 
The number of large methylation differences correlated, 
as expected, with discordance for cellular proportions 
(Fig.  3f ). However, there were also twin pairs with very 
similar buccal epithelial cell proportions that still showed 
hundreds of large methylation differences (Fig. 3f ).

For the twins who were measured twice on EPIC, we 
have four replicate measures of their within-pair meth-
ylation difference (Fig.  3g), which indicated 43–122 
large differences, involving 205 CpGs in total. Of these 
CpGs, 11 were consistently detected at the threshold of 
30% by all four measures of the within-pair difference 
(Fig. 3h). The correlation between replicate measures of 
within-pair differences across these 205 CpGs ranged 
from r = 0.19 to r = 0.66 for the four comparisons (mean 
r = 0.46).

MZ twin correlation for individual CpGs
Next, we computed the correlation between MZ twins 
for individual CpGs after adjusting for cellular propor-
tions that showed variation between samples: epithelial 
cells, neutrophils, B cells, natural killer cells, CD4 + T 
cells, and monocytes. The mean MZ twin correlation 
was 0.21 across all 789,888 autosomal EPIC CpGs after 
QC (Table  2). Correlations were slightly larger (Mann–
Whitney p < 2.2 × 10−16) for the new EPIC probes 
(N = 383,066, mean r = 0.22) compared to the probes that 
are common to HM450 k and EPIC (N = 406,822, mean 
r = 0.20, Fig.  4a). Correlations obtained without adjust-
ment for cellular proportions are presented in Addi-
tional file 1: Table S1. Based on visual inspection of the 

distribution of MZ twin correlations for CpGs located 
in various regulatory elements reported by the Encyclo-
pedia of DNA Elements (ENCODE [24]) and Functional 
ANnoTation Of the Mammalian genome (FANTOM 
[25]) projects (Fig.  4b–f), MZ twin correlations tended 
to be larger for CpGs in FANTOM5 enhancers and 
ENCODE DNase I hypersensitive sites (DHSs), which 
were deliberately enriched among the novel probe con-
tent of the EPIC array. We tested for enrichment of cell-
type-specific regulatory elements among CpGs with MZ 
twin correlations larger than 0.5 before adjusting for cell 
proportions (160,006 CpGs; 20.3%) and after adjusting 
for cell proportions (N = 104,845 CpGs; 13.3%), against 
a background of CpGs from the EPIC array with similar 
properties [26]. For both sets, based on ENCODE DHS 
data, we observed strongest enrichment of DHSs in 
epithelium cells (Additional file  2: Figure S2 and Addi-
tional file 3: Figure S3). This is expected because epithe-
lial cells are the major cell type present in buccal swabs 
and confirm the quality of the data. Testing for overlap 
with 15 chromatin states from the Roadmap Epigenom-
ics project revealed strongest enrichment in enhancers 
of epithelial tissues, with esophagus showing the strong-
est enrichment (Additional file  4: Figure S4 and Addi-
tional file  5: Figure S5). Of note, buccal epithelial cells 
are not included in either ENCODE or Roadmap, and of 
the available reference tissues, esophagus is the closest 
to buccal. Finally, testing for overlap with five core his-
tone marks pointed at H3K4me3 in epithelial cell types 
and tissues as the top enriched histone mark (Additional 
file  6: Figure S6, Additional file  7: Figure S7). H3Kme3 
is associated with transcriptional start sites of actively 
transcribed genes. Without adjustment for cellular pro-
portions, we also observed a weak signal of enrichment 
of leukocyte elements (and a number of other tissues; 
Additional file  2: Figure S2, Additional file  4: Figure S4, 
Additional file  6: Figure S6). After adjusting for cellu-
lar proportions, epithelium was still the most strongly 
enriched, while the signal for leukocytes and other tis-
sues was generally reduced (Additional file 3: Figure S3, 
Additional file 5: Figure S5, Additional file 7: Figure S7).

mQTL analysis
We performed cis mQTL analysis to identify genetic 
variants associated with methylation levels at sites 
interrogated by the EPIC array using genome-wide 
imputed SNP data (1000 Genomes; 1000G) from 
84 twins. This analysis identified 1,296,323 signifi-
cant associations (FDR 5%), involving 33,749 meth-
ylation sites and 616,029 genetic variants. Methylation 
sites were associated with 1–3375 genetic variants 
(mean = 38, median = 13), and genetic variants were 
associated with 1–45 methylation sites (mean = 2, 

Table 2  MZ twin correlations for  DNA methylation level 
at  all autosomal methylation sites assessed by  the  EPIC 
array

Results after adjusting for cellular composition are displayed

Probes Min Median Mean Max

All EPIC probes (789888) − 0.67 0.18 0.21 0.99

Novel EPIC probes (383066) − 0.58 0.19 0.22 0.99

Common probes (406822) − 0.67 0.16 0.20 0.99
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median = 1). As observed in previous mQTL studies, 
the distance between the genetic variant and methyla-
tion site was typically small (median distance = 18  kb 
between methylation site and the strongest associated 
SNP; Fig. 4g). Importantly, 52.9% of the detected meth-
ylation sites affected by mQTLs (N = 17,852) are novel 
EPIC probes that were not previously interrogated by 
the HM450 array. Of the genetic variants associated 
with novel EPIC probes, 293,047 (65.9%) were not sig-
nificantly associated with any of the probes covered 
by HM450, illustrating the power of EPIC to reveal 
novel mQTL targets. Significant mQTLs affected 4.7% 
of EPIC probes and 3.9% of HM450 probes, which 
represents a significant enrichment of mQTL asso-
ciations for novel EPIC probes (x2 = 273.3, df = 1, p 
value < 2.2  ×  10−16). Of the 33,749 methylation sites 
with a significant mQTL in our study of buccal samples, 
15,897 were also interrogated by the HM450 array, and 

7356 of these sites (46.3%) were previously identified 
as being associated with genetic variants in blood by a 
large mQTL study (N = 3841 samples) by the Biobank-
based Integrative Omics Study consortium that applied 
the HM450 array [17].

Methylation sites affected by one or more mQLs were 
characterized by substantially larger MZ twin correla-
tions (mean r = 0.68, SD = 0.17) compared to methylation 
sites without significant mQLs (mean r = 0.19, SD = 0.23), 
Mann–Whitney p < 2.2 × 10−16 (Fig.  4h). Finally, we 
tested for enrichment of cell-type-specific regulatory ele-
ments among methylation sites with significant mQTLs, 
including DHS from ENCODE, and 5 core histone 
marks, and 15 chromatin states from the Epigenom-
ics Roadmap Project. The analysis of DHS revealed the 
strongest enrichment of epithelial cell DHSs (Additional 
file  8: Figure S8), chromatin states pointed at epithelial 
cell enhancers as the top enriched category (Additional 

Fig. 4  Distribution of MZ twin correlations for individual methylation sites assessed by the EPIC array as a function of probe category, functional 
elements, and mQTLs. a Distribution of MZ twin correlations for methylation probes that are common to EPIC and HM450 (pink) and for 
methylation probes that are unique to the EPIC array (blue). b–f Distribution of MZ twin correlations for methylation probes that overlap with (blue) 
or do not overlap with (pink) FANTOM4 enhancers (b), FANTOM 5 enhancers (c), Encode DHS (d), Encode open chromatin (e), Encode transcription 
factor binding sites (f). g Density of distances between methylation sites and the most strongly associated significant meQTL SNP. h MZ twin 
correlations as a function of mQTLs. The cumulative proportion of methylation sites (y-axis) at each MZ twin correlation (x-axis), for all genome-wide 
methylation sites (black), sites that are not significantly associated with an mQTL (blue) and sites that are associated with at least one significant 
mQTL (purple)
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file 9: Figure S9), and the top enriched histone mark was 
H3K4me3 in keratinocytes (Additional file  10: Figure 
S10), highly similar to the pattern displayed by methyla-
tion sites with large MZ twin correlations.

Discussion
We assessed DNA methylation in buccal swabs from 
monozygotic twins to examine the sources of individual 
differences in DNA methylation for sites interrogated by 
the EPIC array and to validate the EPIC array in com-
parison with the HM450 array for buccal DNA samples. 
Correlations between replicates on EPIC for genome-
wide methylation profiles were similar to previously pub-
lished correlations for DNA from other tissues [3]. The 
same was true for correlations between DNA samples 
measured on EPIC and HM450, based on genome-wide 
common methylation sites present on both arrays. For 
individual methylation sites, the genome-wide average 
MZ twin correlation of DNA methylation level obtained 
with the EPIC array was 0.21, and MZ twin correlations 
were slightly larger for the novel EPIC probes (mean 
r = 0.22) compared to the probes that are common to 
EPIC and HM450 (mean r = 0.20). In line with this pat-
tern, we observed a small enrichment of mQTL effects 
among methylation sites interrogated by novel EPIC 
probes. The novel EPIC probe content was designed to 
cover potential enhancers identified in a variety of tis-
sues and cell types by FANTOM5 [25] and ENCODE 
[27]. When we analyzed the distribution of methylation 
sites with a large correlation between MZ twins (r > 0.5) 
across cell-type specific regulatory elements, we found 
the strongest enrichment in epithelial cell enhancers, 
DHS and H3K4me3; the histone mark associated with 
transcriptional start sites of actively transcribed genes. 
The same was true for methylation sites that showed the 
strongest mQTL effects. These findings illustrate that 
correlations between MZ twins for DNA methylation 
level and mQTL effects are stronger for sites located in 
regulatory elements connected to active regions of the 
major cell type from which DNA was extracted. These 
sites are better covered by novel EPIC probes.

To allow for better comparison of the correlations 
between genome-wide DNA methylation profiles of rep-
licate samples, samples from MZ twins, and unrelated 
samples, we obtained correlations based on standard-
ized methylation beta-values. This method illustrated 
the striking similarity of MZ twins for genome-wide 
methylation profiles in comparison with genome-wide 
methylation profiles from unrelated pairs of individuals. 
Notably, 29% of MZ pairs correlated as strongly as tech-
nical replicate measures of the same DNA. This implies 

that the genome-wide methylation differences between 
some pairs may not exceed the amount of variation that 
can result from (unsystematic) technical noise, which 
was not entirely unexpected. Of note, this does not rule 
out that true methylation differences may be present in 
such pairs. By comparing large within-pair methylation 
differences obtained by replicate measures of one MZ 
twin pair, we found that some large methylation differ-
ences were consistently detected by multiple EPIC Bead-
Chip Arrays.

We, and others, have previously used the HM450 array 
to assess genome-wide DNA methylation in buccal swabs 
from twins [15, 16]. In our previous study, we reported 
a mean correlation between MZ twins of 0.31 across all 
HM450 probes [16]. This estimate lies within the range of 
correlations that we obtained with the EPIC array in the 
current study when we did not correct for cellular pro-
portions (mean r = 0.30 across all probes, mean r = 0.32 
for novel EPIC probes, and mean r = 0.28 for common 
probes). Previously, we did not correct for cellular pro-
portions with HEpiDISH since this method was not avail-
able at the time. The reduction of the mean MZ twin 
correlation after cell type correction implies that part of 
the variation in DNA methylation profiles that is shared 
by MZ twins is due to resemblance of MZ twins with 
respect to cellular proportions. We found that the corre-
lation between epithelial cell proportions of buccal sam-
ples from MZ twins was 0.51. This correlation may reflect 
familial influences on adherence to the buccal swab col-
lection protocol and familial influences on cells that are 
present in the mouth. Familial influences include genetic 
and shared environmental influences.

Buccal swabs offer potential advantages to human 
epigenetic studies. Firstly, they contain epithelial cells, 
which are ectodermal, and may therefore be a better 
surrogate tissue for ectodermal tissues such as the brain 
compared to other peripheral tissues such as blood [28, 
29]. Secondly, buccal swab collection is noninvasive, 
making it convenient for large-scale human epigenetic 
studies, especially in children. Buccal swabs are a rela-
tively homogeneous tissue, in the sense that they con-
tain only two major cell types (buccal epithelial cells and 
leukocytes). However, based on a previously published 
method to predict cellular proportions in samples such 
as buccal swabs [21], we observed fairly large variation 
in the relative proportions of epithelial cells and leuko-
cytes between samples (range of predicted buccal cell 
percentage between samples: 57.6% to 96.7%). Similar 
variation in the proportion of epithelial cells in buccal 
swab samples was also recently noted by two other stud-
ies: one study that utilized a microscopy-based method 
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[23] to obtain cell counts and one study that described 
the cell-type deconvolution method that we also applied 
in the current study [21]. Differences in cellular composi-
tion were the most important contributor to variation in 
genome-wide DNA methylation profiles across samples, 
including differences between MZ twins. These findings 
highlight the importance to adjust for cellular composi-
tion in DNA methylation studies of buccal swabs, as is 
commonly recognized in studies of more frequently stud-
ied tissues in epigenetic studies, such as whole blood. 
After adjusting for predicted cellular proportions, the 
genome-wide average MZ twin correlation was reduced, 
and we observed negligible enrichment of leukocyte reg-
ulatory elements among sites with a larger MZ twin cor-
relation. This confirms the effectiveness of this correction 
and indicates that large MZ twin correlations for meth-
ylation sites are (primarily) driven by similarity for DNA 
methylation levels that vary within buccal epithelial cells.

It is possible that the relative proportion of buccal epi-
thelial cells that is harvested might be affected by how 
well individuals adhere to the instructions of our protocol 
and that different protocols or tools (e.g., cotton swabs 
versus flocked swabs) may yield different proportions 
of buccal epithelial cells. The epithelial cell proportions 
observed in our study (mean = 79.6%) are intermediate 
of reports from three previous studies [21–23]. Our esti-
mates are slightly lower than the estimates reported by 
Theda et al. (mean = 90% in children and 83% in adults) 
[23], who used a microscopy-based method to quantify 
cellular proportions, and they are higher than the esti-
mates reported by Eipel et  al. (mean = 65%; based on 
microscopy [22]) and Zheng et al. (mean ~ 50% according 
to Fig. 5) [21]. The estimates by Zheng et al. are based on 
the same reference-based cell type deconvolution method 
as applied by us. Of note, currently available cell-type 
deconvolution algorithms do not allow to distinguish 
between different sub-types of epithelial cells present in 
buccal swabs. The epithelial cells present in buccal swabs 
may be classified into three sub-types, namely intermedi-
ate squamous cells, non-keratinous superficial squamous 
cells (derived from the surface layer of the inner cheek), 
and keratinous superficial squamous cells (derived from 
the surface layer of the gingiva) [23]. Novel methods that 
would allow to estimate these sub-types may be valuable.

This study has several strengths and limitations. This is 
the first study that has measured DNA methylation with 
the EPIC array on DNA obtained from buccal swabs, the 
first study that has measured DNA methylation with the 
EPIC array in MZ twins, and the first to our knowledge to 
perform mQTL analysis on buccal samples. Correlations 

between MZ twins provide an indication of the relative 
importance of familial factors (genetic variation and 
shared environment combined) versus the importance 
of environmental and stochastic influences to inter-
individual variation in methylation levels. Future studies 
that also include DZ twins will allow to estimate the her-
itability of DNA methylation levels for EPIC probes and 
to estimate the variance due to common environment. 
It also remains to be investigated whether other tissues 
show a similar pattern of higher MZ twin correlations 
for DNA methylation at novel EPIC probes and at tissue-
specific regulatory elements.

Conclusions
We conclude that the performance of EPIC and HM450 
arrays on buccal-derived DNA is similar and that the 
total contribution of familial factors (DNA sequence and 
shared environment) to individual differences in DNA 
methylation and the effect of mQTLs is larger for novel 
EPIC probes, especially for probes located in regulatory 
elements connected to active regions specific to the main 
cell type of the investigated tissue. Our findings highlight 
the value of the novel EPIC probe content for interrogat-
ing biologically meaningful differences in DNA meth-
ylation level between samples and for detecting novel 
mQTL targets that are not covered by HM450 probes. 
The results of this study provide a first resource of genetic 
effects on DNA methylation for the EPIC array in buccal 
tissue from children.

Methods
Subjects and samples
The subjects take part in longitudinal studies from the 
Netherlands Twin Register (NTR) [30]. For the cur-
rent study, we selected 107 buccal samples from 105 
monozygotic twins (52 complete pairs and 1 incomplete 
pair, 58% males, mean age at DNA collection = 7  years, 
range = 1–10). For two twins (one pair), a technical repli-
cate measure on EPIC was obtained by running the same 
DNA twice on the EPIC array (on different BeadChip 
Arrays). For 10 twins, methylation data had been gen-
erated before with the HM450 array on the same DNA 
sample [16]. Genome-wide SNP data from genotype 
arrays were available for 90 twins. Four twins were identi-
fied as ethnic outliers based on genome-wide SNP data 
and excluded from the mQTL analysis, resulting in a total 
sample size of 86 twins in the mQTL analysis. This study 
is embedded in a larger project on childhood aggression 
and consists of a selected group of twins who score high 
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or low on aggression. Participants could indicate if they 
wished to be informed of the results of zygosity testing. 
Zygosity testing, based on a set of SNPs and VNTRs, as 
described previously [30], confirmed that all pairs were 
MZ.

Buccal DNA collection for DNA methylation assays
The procedures of buccal swab collection [31] have 
been described previously. In short, 16 cotton mouth 
swabs were individually rubbed against the inside of the 
cheek by the participants and placed in four separate 
15-mL conical tubes (four swabs in each tube) contain-
ing 0.5 mL STE buffer (100 mM sodium chloride, 10 mM 
Tris hydrochloride (pH 8.0) and 10  mM ethylenediami-
netetraacetic acid) with proteinase K (0.1  mg/mL) and 
sodium dodecyl sulfate (SDS) (0.5%) per swab. Individu-
als were asked to refrain from eating or drinking 1 h prior 
to sampling. High molecular weight genomic DNA was 
extracted from the swabs using standard DNA extraction 
techniques. The DNA samples were quantified using the 
Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher 
Scientific, Waltham, MA, USA).

Infinium MethylationEPIC BeadChip data
DNA methylation was assessed with the Infinium Meth-
ylationEPIC BeadChip Kit (Illumina, San Diego, CA, 
USA) [2]. A total of 500 ng of genomic DNA from buc-
cal swabs were bisulfite-treated using the ZymoResearch 
EZ DNA Methylation kit (Zymo Research Corp, Irvine, 
CA, USA). The Infinium HD Methylation Assay (amplifi-
cation, fragmentation, precipitation, hybridization, wash, 
extension, staining, and imaging) was performed at the 
Avera Institute for Human Genetics according to the 
manufacturer’s explicit specifications.

DNA methylation quality control
Overview
Quality control (QC) and normalization of the meth-
ylation data were performed using a pipeline developed 
by the Biobank-based Integrative Omics Study (BIOS) 
consortium [32], which includes sample quality control 
using the R package MethylAid [33] and probe filtering 
and functional normalization as implemented in the R 
package DNAmArray. MethylAid was applied with the 
default array-specific quality filter thresholds for EPIC 
and HM450 arrays. The identity of replicate samples on 
EPIC, samples that were measured on EPIC and HM450, 
and the zygosity of twins was verified with the R package 
omicsPrint [34].

EPIC arrays
First, the EPIC array data were processed separately. 
Out of all EPIC arrays, five DNA samples (4.8%) pro-
duced sub-optimal sample level QC. MethylAid qual-
ity control plots are provided in Additional file 1: Figure 
S11–S15. Functional normalization was performed 
based on five control probe PCs. A screeplot of control 
probe PCs is shown in Additional file  1: Figure S16a. 
The following probe filters were applied: Probes were 
set to missing (NA) in a sample if they had an intensity 
value of exactly zero, detection p value > 0.01, or bead 
count < 3. Probes were excluded from all samples if they 
mapped to multiple locations in the genome, if they over-
lapped with a single nucleotide polymorphism (SNP) 
or Insertion/Deletion (INDEL), or if they had a success 
rate < 0.95 across samples. Annotations of ambiguous 
mapping probes (based on an overlap of at least 47 bases 
per probe) and probes where genetic variants (SNPs or 
INDELS) with a minor allele frequency > 0.01 in Europe-
ans overlap with the targeted CpG or single base exten-
sion site (SBE) were obtained from Pidsley et al. [3]. After 
probe filtering, the success rate of probes for each sample 
was checked: All samples had a success rate above 0.95. 
Only autosomal methylation sites were analyzed, leav-
ing 789,888 out of 865,859 sites for analysis, including 
406,822 CpGs that are also interrogated by the HM450 
array and 383,066 novel CpGs. PCA was performed with 
DNAmArray prior to and after normalization, and the 
correlation of the first ten PCs with technical and biologi-
cal variables (e.g., age, sex, epithelial cell proportion) was 
computed to check for batch effects and biological cor-
relates of variation in genome-wide methylation patterns. 
These analyses indicated that normalization successfully 
reduced variation related to technical factors such as 
96-well plate position and the location of the sample on 
the EPIC array, and that biological factors (cellular com-
position of samples and sex) are the most important driv-
ers of variation in genome-wide methylation levels (as 
illustrated by their strong correlation with PC1 and PC2, 
Additional file 1: Figure S17 and Figure S18). OmicsPrint 
confirmed the identity of samples on EPIC, samples that 
were measured on EPIC and HM450, and the zygosity of 
twins (Additional file 1: Figure S19 and Figure S20).

Combined dataset EPIC and HM450 arrays
In a second step, all EPIC arrays and HM450 arrays were 
processed and normalized jointly based on the com-
mon probe content of the EPIC and 450  k array. We 
first applied sample QC in MethylAid, separately, on the 
HM450 and EPIC arrays. Next, the raw signal intensity 
data (RGsets) from the EPIC and HM450 arrays were 
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merged with the minfi package function combineAr-
rays() to create a virtual HM450 array [35]. After merg-
ing, we applied the same filtering and normalization 
steps as described above. Functional normalization was 
performed based on 5 control probe PCs. A screeplot 
of control probe PCs is shown in Additional file  1: Fig-
ure S16b. This dataset was used for the comparison of the 
10 matched samples that were measured on EPIC and 
HM450 and included 407,395 methylation sites after QC.

Cellular proportions
Cellular proportions were predicted with Hierarchical 
Epigenetic Dissection of Intra-Sample-Heterogeneity 
(HepiDISH) with the RPC method (reduced partial cor-
relation), as described by Zheng et  al. [21] and imple-
mented in the R package EpiDISH. HepiDISH is a 
cell-type deconvolution algorithm that was specifically 
developed for estimating cellular proportions in epi-
thelial tissues based on genome-wide methylation pro-
files and makes use of reference DNA methylation data 
from epithelial cells, fibroblast and seven leukocyte sub-
types. We also used the method described by Eipel et al. 
[22] to predict epithelial cell proportions based on two 
CpGs (cg07380416 and cg20837735). It was previously 
reported that estimates obtained by this method corre-
lated strongly with buccal epithelial cell counts based on 
hematoxylin/eosin staining (r2 = 0.94) [22]. Both meth-
ods were applied to the data after data QC.

Methylation data annotation
The following genomic annotations were obtained 
from the EPIC manifest file provided by Illumina 
(MethylationEPIC_v-1-0_B4.csv): locations of CpG 
islands, ENCODE DNase I hypersensitive sites (DHSs), 
ENCODE transcription factor binding sites (TFBSs), 
open chromatin, FANTOM4 enhancers and FANTOM5 
enhancers.

Genome‑wide SNP data
Genotyping was carried out on several genome‐wide SNP 
micro‐arrays [36]. SNP genotype pre-imputation quality 
control, haplotype phasing, and 1000 Genomes imputa-
tion have been described previously by Lin et al. [36].

Analyses
Correlations between samples
To examine the similarity of genome-wide DNA meth-
ylation profiles between pairs of observations (techni-
cal replicates on EPIC, matched samples on EPIC and 
HM450, samples from MZ twins, and samples from 
unrelated pairs of individuals), we computed the corre-
lations between normalized β-values. We present three 

different types of correlations to allow for comparison 
with previously published correlations. Firstly, we com-
puted Pearson correlations (r) and Spearman correlations 
(rho) between normalized β-values (across all CpGs, i.e., 
CpGs are cases), as reported in previous studies. We also 
computed Pearson correlations between the normalized 
β-values that were standardized (z-scores) prior to com-
puting the correlation. While the correlations between 
unstandardized β-values are greatly influenced by the 
many CpGs with β-values close to the extremes (0 or 
1), correlations between standardized β-values are not 
affected by this and are better suited to obtain a measure 
of the correlation between genome-wide DNA methyla-
tion profiles.

MZ twin correlations for individual CpGs
Secondly, for each CpG, the Pearson correlation (r) was 
computed between the β-value of Twin 1 and the β-value 
of Twin 2 (across all MZ twin pairs, i.e., MZ twin pairs are 
cases), as a measure of the similarity of the methylation 
level of a CpG in MZ twins. These correlations were com-
puted on the normalized methylation β-values and on the 
residuals derived after adjusting for covariates. Mann–
Whitney tests were performed to test for differences in 
the MZ twin correlation between novel EPIC probes that 
are common to EPIC and HM450 and between probes 
with significant mQTLs and without significant mQTLs, 
with the R wilcox.test() function.

Adjustment for covariates
DNA methylation β-values were adjusted for covariates 
by running linear models with the R function lm. Residu-
als were saved and used as input for computing correla-
tions between MZ twins for individual CpGs and for the 
mQTL analysis. Prior to calculating the MZ twin correla-
tions for individual CpGs, methylation data were adjusted 
for cellular proportions of buccal swabs estimated by 
HepiDISH to account for variation in cellular composi-
tion between samples from different twins. We adjusted 
for the following cellular proportions that showed vari-
ation between samples: epithelial cells, neutrophils, B 
cells, natural killer cells, CD4 + T cells, and monocytes. 
Prior to the mQTL analysis, methylation data were 
adjusted for the same cellular proportions plus sex, age, 
and the first ten principal components (PCs) obtained 
from genome-wide SNP data to account for population 
structure within the Netherlands.

Within‑pair differences MZ twins
For each twin pair, the within-pair difference in DNA 
methylation β-value (Δmethylation) was computed 
for each CpG. Next, the number of CpGs with a large 
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within-pair difference per twin pair was counted, which 
we defined as a difference larger than 0.3 (i.e., a differ-
ence in methylation percentage larger than 30%). Data 
from the pair of twins who were measured twice on EPIC 
were used to examine the reproducibility of large within-
pair methylation differences. Specifically, we counted 
the overlap of CpGs with large methylation differences 
detected by replicate measures and computed the cor-
relation between Δmethylation obtained by replicate 
measures.

Cis mQTL analysis
EPIC methylation data and genome-wide SNPs (1000G 
imputation) from 86 MZ twins were used for cis meth-
ylation (m)QTL analysis. In this analysis, all associations 
between genetic variants and methylation sites within 
a distance < 1  M base pairs (Mb) were computed. After 
adjusting for covariates, residual data for each meth-
ylation site were quantile-normalized prior to mQTL 
analysis. Imputed SNP genotypes were coded into refer-
ence allele dosage format and filtered at MAF > 0.01, HW 
P > 1E − 04, MAC > 10, and imputation r2 > 0.8, resulting in 
2,846,659 remaining SNPs for mQTL analysis. Cis mQTL 
effects were detected with a linear model approach using 
MatrixeQTL [37] with methylation level as dependent 
variable and SNP genotype values as independent vari-
able. To account for relatedness of the MZ twins, 10 per-
mutations were performed wherein each permutation the 
relatedness was preserved (i.e., in each permutation the 
genotypes of the MZ twin pairs were assigned the meth-
ylation values of a random MZ twin pair), using the per-
mutation approach previously applied in Jansen et al. [38] 
and Bonder et al. [17]: for each permutation, the complete 
cis mQTL analysis was repeated. The P value threshold for 
rejecting at FDR < 0.05 was computed based on these per-
mutations: by identifying the P value threshold for which 
the total number of methylation sites with a significant 
mQTL in the permuted data divided by the total num-
ber of methylation sites with a significant mQTL in the 
unpermuted data was 0.05. Similar to what was observed 
in Fehrman et al. [39], only 10 permutations were needed 
to have the P value threshold corresponding to FDR < 5% 
converging. The P value threshold corresponding to 
FDR < 5% was 5.5 ×  10−6. Of note, the mQTL P values 
computed in the mQTL analysis are based on the com-
plete sample with related subject and thus are too liberal; 
however, the FDR takes into account the family structure 
and should be used to draw conclusions. The reported 
betas from the linear models can be correctly estimated 
from samples containing related subjects.

Overlap with previous mQTL findings
Methylation sites that were previously reported to be 
associated with cis mQTLs in blood were obtained from 
the BIOS consortium [17]. This mQTL study analyzed 
HM450 array data from 3841 whole blood samples.

Enrichment of cell‑type‑specific regulatory elements
We tested if methylation sites with a large correlation in 
MZ twins (r > 0.5) and methylation sites strongly affected 
by (an) mQTL(s) were enriched within cell-type-specific 
regulatory elements (consolidated Roadmap Epigenom-
ics data on histone marks and chromatin states [40], and 
DHSs from the ENCODE project [24]) with eFORGE 
[26]. This analysis can provide insight into cell-type-spe-
cific signals and into confounding by variation in cellular 
proportions between samples. If MZ twin correlations 
are confounded by cellular proportions, meaning that 
methylation sites with a large correlation are those sites 
that are differentially methylated between the major cell 
types present in buccal swabs (buccal epithelial cells and 
leukocytes), we expect to see enrichment of both epithe-
lial and leukocyte-specific regulatory elements. As input 
list for eFORGE, we first randomly selected 1000 meth-
ylation sites from the total set of methylation sites with a 
correlation > 0.5 between MZ twins without adjusting for 
buccal epithelial cell proportion. Next, to verify the effec-
tiveness of adjusting for buccal epithelial cell proportion, 
we ran eFORGE on an input list of methylation sites with 
a correlation > 0.5 after adjusting for cellular proportions 
(again randomly selecting 1000 CpGs from the total set). 
Third, we ran eFORGE on methylation sites with the 
strongest mQTL(s), by selecting the top 1000 methylation 
sites with the lowest mQTL P value. The analysis of his-
tone marks tested for enrichment of five core marks [40]: 
histone H3 lysine 27 trimethylation (H3K27me3), associ-
ated with polycomb repression, H3 lysine 4 monomethyl-
ation (H3K4me1), associated with enhancer regions, H3 
lysine 4 trimethylation (H3K4me3), associated with pro-
moter regions, H3 lysine 36 trimethylation (H3K36me3), 
associated with transcribed regions, and H3 lysine 9 tri-
methylation (H3K9me3), associated with heterochroma-
tin regions. The analysis of chromatin states tested for 
enrichment of 15 chromatin states (8 active states and 7 
repressed states) [40], including: active transcriptional 
start site (TSS), flanking active TSS, transcribed at a 
gene’s 5′ and 3′ end, strong transcription, weak transcrip-
tion, genic enhancers, enhancers, ZNF genes & repeats, 
heterochromatin, bivalent/poised TSS, flanking bivalent 
TSS/enhancer, bivalent enhancer, repressed polycomb, 
weak repressed polycomb, quiescent/low.
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conversion. Figure S12: Quality control plot of overall sample quality 
based on sample-dependent control probes (Non-Polymorphic quality 
control probes). Figure S13: Quality control plot of the median Methyl-
ated versus Unmethylated signal intensity. Figure S14: Quality control 
plot based on sample-independent hybridization control probes. Figure 
S15: Quality control plot showing the proportion of probes with a detec-
tion p-value < 0.01 within samples. Figure S16: Scree plots of PCs based 
on control probes. Figure S17: Heatmap of the correlations of technical 
and biological variables with PCs based on the genome-wide methylation 
data prior to normalization. Figure S18: Heatmap of the correlations of 
technical and biological variables with PCs based on the genome-wide 
methylation data after functional normalization. Figure S19: IBS mean-
variance plot from omicsPrint of samples measured on EPIC. Figure S20: 
IBS mean-variance plot from omicsPrint of matched samples measured on 
EPIC and HM450.

Additional file 2. DHS enrichment for methylation sites with large MZ 
twin correlation, unadjusted for cellular composition.

Additional file 3. DHS enrichment for methylation sites with large MZ 
twin correlation, adjusted for cellular composition.

Additional file 4. Chromatin state enrichment for methylation sites with 
large MZ twin correlation, unadjusted for cellular composition.

Additional file 5. Chromatin state enrichment for methylation sites with 
large MZ twin correlation, adjusted for cellular composition.

Additional file 6. Histone H3 mark enrichment for methylation sites with 
large MZ twin correlation, unadjusted for cellular composition.

Additional file 7. Histone H3 mark enrichment for methylation sites with 
large MZ twin correlation, adjusted for cellular composition.

Additional file 8. DHS enrichment for methylation sites with the strong-
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