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METHODOLOGY

Joint inference and alignment of genome 
structures enables characterization 
of compartment-independent reorganization 
across cell types
Lila Rieber and Shaun Mahony* 

Abstract 

Background: Comparisons of Hi–C data sets between cell types and conditions have revealed differences in 
topologically associated domains (TADs) and A/B compartmentalization, which are correlated with differences in 
gene regulation. However, previous comparisons have focused on known forms of 3D organization while potentially 
neglecting other functionally relevant differences. We aimed to create a method to quantify all locus-specific differ-
ences between two Hi–C data sets.

Results: We developed MultiMDS to jointly infer and align 3D chromosomal structures from two Hi–C data sets, 
thereby enabling a new way to comprehensively quantify relocalization of genomic loci between cell types. We 
demonstrate this approach by comparing Hi–C data across a variety of cell types. We consistently find relocalization of 
loci with minimal difference in A/B compartment score. For example, we identify compartment-independent relocali-
zations between GM12878 and K562 cells that involve loci displaying enhancer-associated histone marks in one cell 
type and polycomb-associated histone marks in the other.

Conclusions: MultiMDS is the first tool to identify all loci that relocalize between two Hi–C data sets. Our method can 
identify 3D localization differences that are correlated with cell-type-specific regulatory activities and which cannot 
be identified using other methods.
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Background
Chromosome conformation data have become available 
for diverse cell types, perturbations, and developmen-
tal stages. Comparing these data sets can highlight the 
relationship between three-dimensional chromosomal 
structure and biological function. To date, such com-
parisons have primarily examined known chromosomal 
structures, such as A/B compartments, topologically 
associated domains (TADs), and loops. Though TADs 
are largely conserved across cell types and species [1], 

extensive differences in compartmentalization [2, 3] and 
looping are detectable between data sets [4–6] and are 
correlated with differential gene expression. However, 
focusing on known types of differences means that other 
potentially functional differences remain unexplored. For 
example, relocalization within a compartment or TAD 
could be correlated with differences in gene regulation 
but might not be identified by current approaches for 
comparing Hi–C data sets.

Current methods for comparing chromosome conforma-
tion data sets (primarily from Hi–C experiments) can be 
classified as global, interaction-specific, or locus-specific. 
Some global methods calculate an overall similarity score 
for two Hi–C data sets, enabling clustering of experiments 
[7–10]. Global concordance in TAD boundaries can also be 
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calculated [11]. However, these methods cannot discover 
specific differences between data sets. Interaction-specific 
methods identify genomic locus pairs that significantly dif-
fer in their interaction frequency, which may indicate gain 
or loss of a chromatin loop [12–16], but cannot determine 
how the interacting pair of loci have moved with respect to 
the rest of the genome or which locus within the pair drives 
the change. Locus-specific methods identify differences in 
organization, such as a difference in compartment score [2, 
3] or insulation score [17, 18], that occur at a single locus, 
which is a single bin at the resolution of the Hi–C data. 
However, these methods are currently limited to measuring 
differences in known forms of chromatin organization, pre-
venting the discovery of novel structures. There is currently 
no method for quantifying general locus-specific relocali-
zations between Hi–C data sets. Ideally, such a method 
would quantify the degree to which a given locus has 
changed position with respect to the rest of the genome, 
regardless of whether the relocalization was driven by dif-
ferences in compartmentalization, TAD structure, looping, 
or a combination of several effects.

In a Hi–C data set, each locus is represented as a vec-
tor of interaction frequencies with every other locus of the 
genome or chromosome. Because typical metrics for vec-
tor comparison, such as Pearson correlation, are biased by 
Hi–C distance decay, comparison of data sets is challeng-
ing [10]. To mitigate issues associated with the high dimen-
sionality of Hi–C data, we first aim to embed the data sets 
in a lower dimensional space. In this work, we choose to 
embed Hi–C data in three dimensions, representing the 
population average chromosome structure. While the 
physical interpretation of 3D chromosome structures 
is limited by population heterogeneity, we propose that 
comparing two 3D structures provides a convenient and 
intuitive assessment of the overall differences in chromatin 
organization across cell types or conditions. If the struc-
tures are comparable and correctly aligned, the degree to 
which a given locus has shifted position can be calculated 
as the Euclidean distance between the 3D coordinates of 
that locus in each of the structures. We have developed 
MultiMDS to simultaneously infer and align 3D structures 
from two Hi–C data sets. By applying our method to a 
number of mammalian and yeast Hi–C data sets, we iden-
tified examples of chromatin relocalization correlated with 
biological function, some of which confirm previous find-
ings and some of which are potentially novel.

Results
MultiMDS: a principled approach for comparing genome 
structures
We developed MultiMDS to quantify locus-specific 
relocalization between Hi–C data sets. MultiMDS takes 
as input two normalized Hi–C contact matrices and 

outputs two aligned 3D structures, which represent the 
ensemble average structures for the respective inputs 
(Fig.  1a). Relocalization is calculated as the locus-spe-
cific Euclidean distance between aligned structures 
(Fig. 1b). Because Hi–C contact frequencies are believed 
to be a function of the average physical distances in the 
chromosomal structures, a distance-preserving dimen-
sionality reduction method is the most intuitive option. 
Multidimensional scaling (MDS) minimizes the differ-
ence between the input distances derived from the Hi–C 
contact matrix and the embedded distances, so it has 
previously been used for structural inference from Hi–C 
data [19–23]. Though it is possible to use other dimen-
sionality reduction methods, such as principal compo-
nent analysis (PCA), to embed Hi–C data, these methods 
are often not distance-preserving and so the relationship 
between structural distances and physical distances is 
less clear.

It is possible to align independently estimated struc-
tures, for example [24]. However, due to the inherent sto-
chasticity of structural inference algorithms, independent 
structural inference followed by alignment overestimates 
the difference between data sets and results in irrepro-
ducible output. Though there are many Hi–C structural 
inference methods, ours is the first to jointly model two 
Hi–C data sets while sharing information between them.

To address the issue of stochasticity, MultiMDS per-
forms MDS embedding and alignment simultaneously on 
both data sets while minimizing the difference between 
embeddings multiplied by a similarity weight, which 
quantifies the degree to which the embeddings are forced 
to be similar (Algorithm  1). A higher similarity weight 
results in fewer, higher confidence differences between 
the estimated structures. The embedding difference term 
is easily incorporated into the MDS loss function (see 
“Methods”), another advantage of using MDS instead of 
PCA, which does not use a loss function.

The stochasticity of independent MDS can be observed 
when inferring and aligning structures from the same 
data set across multiple iterations. The root mean square 
distance (RMSD), which should be zero, is much higher 
for independent MDS than for MultiMDS run with a 
similarity weight of 0.02 (Additional file 1: Fig. S1). Next, 
we tested the ability of MultiMDS to align chromosomal 
structures from different cell types. We quantified the 
effects of various similarity weights on the alignment of 
GM12878 and K562 chr21. A similarity weight of zero 
is equivalent to independent MDS, so in this condition, 
we performed alignment after structural inference. We 
tested the effect of MultiMDS on reproducibility, meas-
ured as the correlation between pairwise MultiMDS 
output across multiple runs with the same input, at simi-
larity weights between 0 and 0.1, to demonstrate that 
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large similarity weights are not needed. Even a similarity 
weight of 0.05 suffices to improve the reproducibility of 
alignment to near perfect (Fig.  1c). On the other hand, 
even large similarity weights do not significantly worsen 
embedding accuracy relative to independent MDS, as 
the embedding error (measured as the RMSD between 
the distance matrix derived from the input Hi–C con-
tact matrix and the distance matrix derived from the 
embedded structure) for each data set increases little 
even at a similarity weight of 0.5 (Additional file 1: Fig. 
S2), suggesting that there are multiple structures that fit 
the data similarly well. For another example, we aligned 
mouse embryonic stem cell (mESC) and mouse hepato-
cyte chr19 with various similarity weights. A similarity 
weight of 0.04 suffices to improve reproducibility for this 

comparison (Additional file  1: Fig. S3). In general the 
optimal similarity weight depends on the data sets being 
compared and can be inferred by testing reproducibility 
at a variety of weights. MultiMDS provides the option 
to use the same partitioning algorithm as miniMDS, an 
approximation of MDS used for individual structural 
inference on Hi–C data sets, to improve efficiency [25]. 
Like miniMDS, MultiMDS is computationally efficient, 
with little increase in computational time relative to 
independent structural inference and alignment (Addi-
tional file  1: Fig. S4). MultiMDS can be run on very 
high-resolution data. For example, we ran MultiMDS 
on GM12878 and K562 at 5-kb resolution, the highest 
resolution at which Hi–C data was available for multiple 
mammalian cell types (Additional file 1: Fig. S5). 

Fig. 1 a Example of MultiMDS applied to GM12878 and K562 chr21 data sets at 10-kb resolution. b Example of relocalization distance calculations 
in aligned GM12878 and K562 chr21 structures. Only chr21:22.26–23.26 Mb is shown. Relocalization distance is calculated for the loci 22.61–
22.62 Mb (magenta) and 22.31–22.32 Mb (blue). c Pairwise correlations between multiple runs of MultiMDS applied to GM12878 and K562 chr21, 
measured across a range of similarity weights. Zero weight represents independent inference and alignment
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MultiMDS identifies simulated differential boundaries
We simulated two chr21 Hi–C data sets using sim3C, 
which probabilistically generates reads based on simu-
lated chromosomal interaction domain (CID) bounda-
ries, similar to TADs [26]. The two data sets differ at 
one boundary, which is located at 39  Mb in one data 
set and 40 Mb in the other, but otherwise have identical 
CIDs (Additional file 1: Fig. S6). However, the locations 
of particular reads are randomly generated based on the 
underlying probability distributions, simulating the noise 
of Hi–C experiments. MultiMDS, but not independent 
MDS inference and alignment, identified a sharp peak at 
the differential boundary (Additional file 1: Fig. S7).

MultiMDS analysis detects known galactose‑dependent 
genomic relocalizations in yeast
To demonstrate the abilities of MultiMDS to align 
chromosome structures and quantify locus-specific 
relocalization, we begin with comparisons of yeast intra-
chromosomal Hi–C data sets. Chromatin structure reor-
ganizes in yeast in response to changes in environment, 
but this has been difficult to systematically quantify, 
because yeast do not have A/B compartmentalization to 
the extent that mammalian cells do. In mammalian cells, 
long-range chromatin interactions are largely explained 
by compartment score, which is calculated as the first 
principal component of the correlation matrix derived 
from the contact matrix [27]. Compartment score corre-
lates with the position of a locus along an axis between 
the active nuclear interior (A compartment) and the inac-
tive lamina-associated domains (B compartment) [28] 
(Additional file  1: Fig. S8). Yeast lack a nuclear lamina 
[29] and so would not be expected to have A/B compart-
mentalization. As predicted, PC1 explained far less vari-
ance of the Hi–C correlation matrix in yeast compared 
to mouse and human (Additional file  1: Fig. S9A). We 
also performed linear support vector regression (SVR) 
on PC1 scores regressed on 3D coordinates from output 

structures. SVR finds the 3D axis that explains the most 
variance in scores and calculates the coefficient of deter-
mination R2, the fraction of variance in scores explained 
by this axis. The lower R2 values for compartment scores 
regressed on yeast structures, relative to mouse and 
human, suggest that PC1 does not correspond to a single 
physical axis in yeast (Additional file 1: Fig. S9B).

A previous study compared Hi–C data from yeast 
grown with glucose to yeast grown with galactose but 
was limited to measuring differential interaction fre-
quency between pairs of loci, which cannot identify 
loci that drive changes [30]. Because the experiments 
were performed in hybrid yeast (Saccharomyces cerevi-
siae × Saccharomyces uvarum), it was possible to phase 
the data by homologs. The Has1–Tda1 locus was shown 
to pair with its homolog upon galactose induction.

MultiMDS comparison between glucose- and galac-
tose-responsive intrachromosomal Hi–C data sets for 
each yeast chromosome appropriately detects relocaliza-
tion of the Has1–Tda1 locus, but only for the S. uvarum 
homolog (Figs.  2a, b, 3a, b). To validate the robustness 
of MultiMDS results, we ran each comparison ten times 
with random initializations. The locations of peaks were 
consistent across MultiMDS iterations. The quantifica-
tion suggests that only one locus drives pairing of the 
homologs, which could not have been determined by 
Hi–C loop calling. We also confirmed the expected relo-
calization of the Gal1–Gal7–Gal10 locus (Figs. 2c, d, 3c, 
d). MultiMDS showed that Gal3 and Gal4 also relocalize 
in the presence of galactose (Figs.  2e–h, 3e–h), though 
the relocalization of these genes had not been reported 
in the original study. The Gal1–Gal7–Gal10 relocaliza-
tion was stronger for the S. uvarum homolog, whereas 
the Gal3 relocalization only occurred for the S. cerevi-
siae homolog. The Gal4 relocalization occurred for both 
homologs.

On chr12, we observed that the rDNA genes cre-
ate a boundary between the upstream and downstream 
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genomic regions. Because this made chr12 difficult to 
align, we aligned the two parts of the chromosome sepa-
rately (Additional file 1: Fig. S10). In the upstream region, 
which excluded the rDNA genes, we observed relocaliza-
tion of Gal2, with similar magnitude between homologs 
(Figs. 2i, j, 3i, j). In the downstream region, the S. cerevi-
siae rDNA genes displayed the strongest relocalization of 
any locus in the genome (Figs. 2k, l, 3k, l), which may be 
due to a change in conformation in the nucleolus. It has 

Fig. 2 MultiMDS unitless relocalization distance of loci between 
conditions, for selected chromosomes. Gray: individual iterations. 
Blue: mean. Genomic coordinates (kb) are shown on x axes. a, b 
Has1–Tda1. c, d Gal1–Gal7–Gal10. e, f Gal3. g, h Gal4. i, j Gal2. k, l 
rDNA

Fig. 3 Aligned structures for glucose (blue) and galactose (green) 
conditions. Loci of interest are highlighted in red, and are presented 
in the same order as in Fig. 2
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been previously shown that the yeast nucleolus changes 
conformation in different media, for example galactose 
or dextrose [31]. Using independent structure inference 
and alignment, relocalization at most of these genes can-
not be observed and the results are dominated by noise, 
demonstrating the importance of MultiMDS’s joint struc-
tural inference (Additional file 1: Fig. S11). Though other 
examples of relocalized loci are seen in these data sets, 
the Gal genes and rDNA are among the highest peaks on 
their respective chromosomes.

Yeast genes, including Gal1–Gal7–Gal10, relocalize 
to the nuclear periphery upon activation, where they 
interact with the nuclear pore components, including 
Nup60 [30]. Differential ChIP-seq enrichment of Nup60 
in the presence of galactose relative to glucose had been 
qualitatively observed in Gal1–Gal7–Gal10, though 
not Has1–Tda1 [30]. Using peak calling, we observed 
Nup60 peaks throughout the gene bodies of Gal1–7–
10 (Additional file  1: Figs.  S12A, S13A), Gal2 (Addi-
tional file  1: Figs.  S12B, S13A), Gal3 (Additional file  1: 
Figs.  S12D, S13A), and Tda1 but not Has1 (Additional 
file 1: Figs. S12C, S13A). Differential enrichment was also 
found near the transcription start site of Gal4 (Additional 
file 1: Figs. S12E, S13A). As a negative control we found 
that Hxt1, a glucose transporter, lost Nup60 binding in 
the presence of galactose (Additional file  1: Figs.  S12F, 
S13A). Tda1 and all relocalized Gal genes were upregu-
lated, and Has1 and Hxt1 were downregulated (Addi-
tional file 1: Fig. S13B).

Inter‑compartment relocalizations dominate mammalian 
cell‑specific differences in genome structure
Despite heterogeneity in chromosome conformation 
between individual cells, distinct patterns of compart-
mentalization can be observed between mammalian cell 
types, which correlate with differences in gene regulation 
[2, 3]. The detection of compartment changes in popula-
tion Hi–C data suggests that localization relative to the 
nuclear periphery, and possibly other landmarks, could 
be detected using MultiMDS.

We first tested whether MultiMDS was able to iden-
tify a consistent axis representing compartmentalization. 
Compartment scores are not used as input to Multi-
MDS, so there is no guarantee that the two structures 
agree on this axis. Indeed, when linear SVR is used to 
regress compartment scores on the 3D coordinate on 
unaligned structures, on average only 41% of the vari-
ance in compartment scores is explained by a single axis 
in the structures  (Additional file  1: Fig. S14). We per-
formed intrachromosomal MultiMDS on GM12878 and 
K562 data sets. Because these data sets are not phased 
by homolog, each alignment represents the average of 
the two homologs. Next, we performed linear SVR on 

the compartment scores for each 3D coordinate in the 
aligned structures. On average, 87% of the variance in 
compartment scores in the GM12878 and K562 data is 
explained by the SVR axis, which we refer to as the com-
partment axis. This supports the hypothesis that com-
partmentalization represents a single physical axis in the 
nucleus (Additional file 1: Fig. S14), representing position 
relative to the nuclear periphery [28]. The high SVR coef-
ficients demonstrate that MultiMDS alignments are cap-
turing consistent features of nuclear organization, rather 
than superficial similarities between the structures.

As expected, differences along the compartment axis 
correlate with compartment score differences. For exam-
ple, the antiviral genes Mx1 and Mx2 have a weaker 
A compartment score in K562 relative to GM12878, 
associated with a loss of activity, and can be observed 
relocalizing along the compartment-associated axis in 
MultiMDS-aligned intrachromosomal structures for 
these cell types (Additional file 1: Fig. S15).

It is clear that cell types differ in compartment score at 
certain loci, which can be quantified by subtracting nor-
malized compartment scores from different data sets. 
However, this approach cannot identify compartment-
independent differences and thus cannot quantify the 
extent to which compartment differences explain global 
differences in Hi–C data. Because MultiMDS relocaliza-
tion differences are calculated as 3D vectors, they can be 
decomposed into three components: the difference along 
the compartment axis, and the differences along the two 
remaining orthogonal axes (arbitrarily labeled 1 and 2). 
We can thus calculate the fraction of each locus’s 3D relo-
calization distance that is attributable to each axis. To 
exclude the possibility that the physical lengths of each 
axis confound the results, we divided each fraction by the 
axis length. We found that the compartment axis is over-
represented for relocalization in pairwise comparisons of 
ENCODE cell types (GM12878, K562, KBM7, HUVEC, 
HMEC, and NHEK), even when normalized to axis length 
(p = 2.8 × 10−149) (Fig.  4a). Comparisons of mouse cell 
types (G1E-ER4, HPC-7, mESC, and hepatocyte) revealed 
a similar magnitude of compartment overrepresentation, 
indicating that the overrepresentation is not species-spe-
cific (p < 10−6) (Fig. 4b). Compartment axis differences are 
also overrepresented when comparing lymphoblastoid cell 
lines (LCLs) from different individuals (p = 3.4 × 10−36) 
(Fig. 4c). The overrepresentation of the compartment axis 
cannot be observed using independent structure inference 
and alignment (Additional file  1: Fig. S16). The relative 
overrepresentation of compartment axis relocalizations 
was consistent regardless of the total magnitude of relo-
calization, which varied significantly (Fig. 4e).

Given that compartmentalization is highly conserved 
between replicates (Additional file  1: Fig. S17), we 
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expect relocalizations between replicates to represent 
noise and not be enriched for compartment differences. 
Compartment axis overrepresentation was not seen 
when comparing GM12878 replicates (p = 0.08) (Addi-
tional file  1: Fig. S18), and the compartment axis was 
in fact underrepresented in mouse cell-type replicates 
(p = 3 × 10−9) (Fig.  4d). The underrepresentation may 

be due to the compartment axis being more constrained 
relative to the other axes, which may have more random 
variation.

Next we used MultiMDS to validate the relation-
ship between various architectural proteins and com-
partmentalization. CTCF [17] and Brd2 [18] enforce 
TAD boundaries, and their loss does not affect 

Fig. 4 Relocalization distance along each 3D axis as a fraction of total relocalization distance. The compartment axis and two axes orthogonal to it 
(“Orthogonal 1” and “Orthogonal 2”) are shown. Comparisons are a ENCODE cell lines (GM12878, K562, KBM7, HUVEC, HMEC, and NHEK), b mouse cell 
types (G1E-ER4, HPC-7, mESC, and hepatocyte), c LCLs, and d mouse cell-type replicates. Total magnitude of difference along all axes is shown in e 
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compartmentalization. On the other hand, cohesin 
appears to oppose compartmentalization by forming 
TADs, and its loss causes a finer-grained compartmen-
talization to appear [32]. We used MultiMDS to align 
intrachromosomal Hi–C data sets from wild-type cells to 
Hi–C data sets resulting from auxin-inducible depletion 
of CTCF in mESCs, Brd2-knockout (KO) in mouse G1E-
ER4 cells, and conditional KO of cohesin loading factor 
Nipbl in mouse hepatocytes. The relocalizations charac-
terized by MultiMDS in comparisons between cohesin 
depletion and control Hi–C data are enriched along 
the compartment axis (p < 10−4) (Fig.  5a). Conversely, 
compartment axis relocalizations are not enriched in 
comparisons between the Brd2 depletion and control 
Hi–C data (p = 0.32) (Fig.  5b) and are slightly depleted 
in comparisons between the CTCF depletion and con-
trols (p < 0.05) (Fig.  5c). The results of MultiMDS serve 
as validation of previous findings about the role of these 
proteins in the 3D genome.

MultiMDS detects intra‑compartment relocalizations 
across cell types
Despite the overrepresentation of relocalization along the 
compartment axis, some orthogonal relocalization also 
occurs. For example, most relocalization peaks overlap 
with differential compartment score peaks in compari-
sons between chr21 structures at 100-kb resolution from 
IMR90 (embryonic lung fibroblast), HMEC (mammary 
epithelial), and HUVEC (umbilical vein endothelium) 
cell lines (Fig. 6a–c). However, some relocalization peaks 
do not overlap compartment difference peaks. In par-
ticular, a relocalization at chr21:47.4–47.5  Mb does not 
significantly differ in compartment score. This locus con-
tains an intergenic region at chr21:47.75–47.5  Mb that 
displays different histone modifications across these cell 
lines (Additional file  1: Fig. S19A). In IMR90 the locus 
contains several accessible regions displaying H2A.Z, 
H3K4me1, H3K4me2, and H3K27ac ChIP-seq enrich-
ment, DNase accessibility, and enhancer states (as char-
acterized by the IDEAS genome segmentation approach). 
HMEC cells also have active marks at this locus, though 
weaker and without H3K27ac, and have shorter regions 
of enhancer states, as well as polycomb and heterochro-
matin states. HUVEC cells have low active ChIP-seq and 
DNase-seq signals at this locus, with some H3K27me3, 
and have more polycomb and heterochromatin states and 
fewer enhancer states. As a negative control, we aligned 
the HUVEC data with K562 (chronic myelogenous leuke-
mia), a cell line in which this locus has low active ChIP-
seq and DNase-seq signal and high H3K27me3 signal and 
polycomb and heterochromatin states. No relocalization 
was observed between K562 and HUVEC at this locus 
(Fig. 6d).

We then performed intrachromosomal MultiMDS 
alignment at 25-kb resolution to visualize the confor-
mation of the chr21:47.75–47.5  Mb locus. For clarity, 
we viewed structures for each cell type individually. In 
IMR90, the locus appears to contact the chr21:46.9–
47.0 Mb locus (Fig. 7a). In HMEC, the locus is closer to 
the chr21:46.9–47.0 Mb locus than in HUVEC and K562, 
but does not directly contact it (Fig. 7b–d).

Fig. 5 Relocalization distance along each 3D axis as a fraction of 
total relocalization distance. The compartment axis and two axes 
orthogonal to it (“Orthogonal 1” and “Orthogonal 2”) are shown. 
Comparisons are for depletion of a cohesin, b Brd2, and c CTCF



Page 9 of 17Rieber and Mahony  Epigenetics & Chromatin           (2019) 12:61 

Virtual 4C plots from the viewpoint of chr21:47.4–
47.5  Mb reveal a strong peak at chr21:46.9–47.0  Mb in 
IMR90, the same region that the putative enhancer appears 
to contact in the 3D plots (Fig.  8a). This peak is present 
but weaker in HMEC (Fig. 8b) and not present in HUVEC 
and K562 (Fig. 8c, d). The chr21:46.9–47.0 Mb locus con-
tains the COL18A1 gene, a component of the extracellular 
matrix, which has higher H3K36me3 signal in IMR90 rela-
tive to the other cell lines (Additional file 1: Fig. S19B).

The differences in activity at the chr21:47.4–47.5  Mb 
locus cannot be predicted based on compartment scores 
alone. Though IMR90 has a slightly higher A compart-
ment score at this locus compared to the other cell lines, 
HUVEC and K562 have higher compartment scores than 
HMEC, despite having less activity at this locus (Addi-
tional file 1: Table S1).

Next we performed a genome-wide quantification 
of intrachromosomal MultiMDS relocalizations with 

minimal compartment score difference in GM12878 
compared to K562. We called peaks in relocalization 
magnitude for 10-kb bins and, after filtering for mappa-
bility, identified peaks with absolute difference in com-
partment score of less than 0.2 (compartment scores 
range between − 1 and 1) (Additional file  1: Fig. S20). 
Though some relocalization peaks do not overlap com-
partment differences, we noted that few compartment 
difference peaks occur without relocalization peaks, 
as would be expected. We analyzed peaks within each 
compartment separately, so that peaks would not dif-
fer from background in compartment composition. We 
term these intra-A and intra-B relocalization peaks, 
respectively. Relative to 56,394 mappability-filtered 
background loci in the A compartment, the 2562 intra-
A relocalization peaks were enriched for H3K27ac, 
H3K4me1, H3K4me3, H3K9ac, H2A.Z, H3K4me2, and 
IDEAS enhancer states in GM12878, and depleted for 

Fig. 6 Relocalization and absolute compartment score differences (normalized to 1) between IMR90 and HMEC (a), IMR90 and HUVEC (b), HMEC 
and HUVEC (c), and K562 and HUVEC (d)
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these marks in K562 (Fig. 9). The peaks were enriched 
for the polycomb-associated marks H3K27me3 and 
EZH2 and IDEAS polycomb states in both GM12878 
and K562. H3K36me3 and IDEAS transcription states 
were depleted in both GM12878 and K562. These dif-
ferences were not due to the intra-A relocalization 
peaks differing in compartment score between the cell 
types or to the peaks having higher compartment scores 
than the background (Additional file 1: Fig. S21A, B). In 
fact, the peaks have slightly lower compartment scores 
than the background, so they would be expected to be 
depleted of active marks. Most of these results cannot 
be observed using independent MDS (Additional file 1: 
Fig. S22A).

The 2543 intra-B relocalization peaks had similar 
enrichments for histone modifications and states relative 
to 57,263 mappability-filtered background loci in the B 
compartment (Additional file  1: Fig. S23). However, the 
peaks have slightly higher compartment scores than the 
background (Additional file  1: Fig. S21D), so compart-
ment effects could explain this enrichment.

Using hierarchical clustering of ChIP-seq coverage, we 
identified distinct subsets of intra-A relocalization peaks 

(Fig.  10). A large fraction of peaks are highly enriched 
for active marks. While some of these peaks are active 
in both GM12878 and K562, some lose active marks in 
K562 and gain H3K27me3. Other peaks have H3K27me3 
in only one cell type but lack active marks in the other 
cell type.

In summary, MultiMDS enables the detection of 
intra-compartment relocalizations, for example loci that 
change localization between two cell types but remain 
in the A compartment in both. Such intra-compartment 
relocalizations appear to be correlated with cell-type-
specific changes in regulatory activity.

Discussion
MultiMDS is a computationally efficient tool for quanti-
fying locus-specific differences between Hi–C data sets, 
which can be used even for Hi–C data that lacks com-
partment scores or TAD calls. It captures the known 
effects of A/B compartment score differences and quan-
tifies the contribution of these differences to global dif-
ferences in Hi–C data. At the same time, MultiMDS is 
able to go further than previous types of Hi–C analy-
sis by identifying differences not based on differential 

Fig. 7 Structures for chr21:45.0–48.1 Mb in IMR90 (a), HMEC (b), HUVEC (c), and K562 (d). 47.475–47.5 Mb is highlighted in red, and chr21:46.9–
46.975 Mb is highlighted in green
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compartmentalization, TADs, or looping. MultiMDS 
also differs from differential loop calling tools, because it 
can identify the specific locus that drives loop formation. 
We demonstrated this ability by showing that a single 
homolog drives galactose-inducible homolog pairing at 
the Has1–Tda1 locus.

Because of the strong correlation between regula-
tory activity and compartmentalization, differences 
in compartment score have dominated previous com-
parisons of Hi–C data. To explore compartment-inde-
pendent differences, we used Hi–C data from yeast, 
which lack compartmentalization. Examples of loci that 
change conformation upon galactose induction, such as 
Gal1–Gal7–Gal10 [30] and the nucleolus [31], had been 
previously identified, but comparisons had not been per-
formed systematically. We confirmed these examples 
and also showed that Gal2, Gal3, and Gal4 relocalize in 
response to galactose. All the relocalized Gal genes are 

Fig. 8 Virtual 4C plots with viewpoint at chr21:47.4–47.5 Mb for IMR90 (a), HMEC (b), HUVEC (c), and K562 (d). Green dashed line shows 46.9–
47.0 Mb

Fig. 9 Enrichment of mean coverage of chromatin marks in intra-A 
relocalization peaks relative to background A compartment. Stars 
represent p < 0.01
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upregulated and gain Nup60 peaks, suggesting that the 
effect occurs via nuclear pore association. It had origi-
nally been reported that Has1–Tda1 does not gain Nup60 
binding, based on visual inspection, but a quantitative 
analysis revealed a Nup60 peak at Tda1 upon galactose 
induction. The gain in nuclear pore association is consist-
ent with the upregulation of Tda1 and its role in glucose 
metabolism [30].

Due to the strong effect of compartmentalization 
on long-range interactions, it is challenging to remove 
the effect of compartment score differences, which are 
strongly associated with differences in gene regulation, 
from other differences in chromosomal structure. The 
contribution of compartment differences to overall struc-
tural differences was enriched in both mouse and human 
cell types and even in LCLs from different individuals. 
During the preparation of this manuscript, results were 
published showing that variation in chromosome confor-
mation between LCLs is correlated with gene regulation 
[33]. The overrepresentation of the compartment axis 

may be because differences along orthogonal axes are less 
functional and more stochastic and are thus less visible 
in aggregate Hi–C data. Consistent with this hypothesis, 
differences along the compartment axis are depleted in 
comparisons of mouse cell-type replicate Hi–C data sets. 
As expected, a large fraction of changes after cohesin 
depletion are driven by compartment changes, specifi-
cally a gain in compartmentalization strength, while Brd2 
depletion and CTCF depletion do not significantly affect 
compartmentalization.

Despite the enrichment of compartment axis relocaliza-
tions, we identified examples of loci that relocalized with-
out significant compartment score differences. While it is 
possible that some compartment-independent relocaliza-
tions are driven by compartment-dependent reorganiza-
tion of distal loci, several display evidence of changes in 
regulatory activities. For example, a putative enhancer on 
chr21 relocalizes between cell types in which it appears 
active, poised, or polycomb repressed, suggesting that 
these states correspond to three distinct conformations. 

Fig. 10 Hierarchical clustering of ChIP-seq peak coverage in intra-A relocalization peaks
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The presence of a cell-type-specific enhancer at this locus 
was consistent with the results of our genome-wide quan-
tification of loci that relocalize within the A compartment 
between GM12878 and K562 with minimal compartment 
score difference. The relocalized loci were enriched for 
enhancers and polycomb in GM12878, suggesting active 
and poised enhancers, but were depleted for enhancers 
and enriched for polycomb in K562. The contrast between 
activity and repression may hint at global differences in 
regulation that occur between K562 and GM12878. On 
the other hand, the relocalized loci were depleted of active 
transcription in both cell types relative to the background 
A compartment. Given the strong relationship between 
compartment score differences and differential gene 
expression [2, 3], the correlation with histone modifica-
tions further supports the hypothesis that the relocaliza-
tions we identify represent a compartment-independent 
regulatory mechanism.

The enrichment of enhancers at the relocalizations 
may be due to promoter–enhancer looping, as in the 
example of the enhancer on chr21. One possibility is that 
the enhancers are differentially associating with nuclear 
speckles. It has been shown that distance from nuclear 
speckles in the A compartment is independent of the 
nuclear lamina compartment axis and is correlated with 
super-enhancers and H3K4me3, H3K9ac, and CTCF 
peaks [34]. Thus the compartment-independent relocali-
zations we identified may represent differences in nuclear 
speckle association. Other relocalization peaks have cell-
type-specific H3K27me3 without active marks, which 
may be associated with polycomb hubs that organize the 
3D genome [35, 36].

Conclusions
MultiMDS is a user-friendly tool that provides both vis-
ual and quantitative metrics of relocalization, as well as 
a method for quantifying the contribution of the com-
partment axis to global differences, which could be used, 
for example, to determine the role of other architectural 
proteins in compartmentalization. Though MultiMDS 
output cannot be interpreted as physical structures, 
MultiMDS is able to capture consistent structural fea-
tures present throughout the population of cells. Our 
preliminary results showing the correlation of functional 
features with compartment-independent relocalizations 
hint at the existence of novel forms of nuclear organiza-
tion, which can be further explored using MultiMDS. As 
more Hi–C data sets are produced, the number of pos-
sible comparisons will increase exponentially, improving 
our understanding of the relationship between 3D chro-
mosomal structure and function.

Methods
Data sets
We used published data sets for all analyses: normalized 
Hi–C data sets from yeast grown in glucose and galac-
tose media, which were aligned to the sacCer3 refer-
ence genome [30]; raw Hi–C counts from ENCODE cell 
lines, which were aligned to the hg19 reference genome 
[37]; normalized Hi–C data from lymphoblastoid cell 
lines (LCLs), which were aligned to the hg38 reference 
genome [38] made available through the 4D Nucleome 
Project [39]; ICE-normalized Hi–C data from wild-type 
and Brd2-knockout (KO) G1E-ER4 cells [18], Hi–C reads 
from HPC-7 cells [40], ICE-normalized Hi–C data from 
wild-type and Nipbl conditional KO mouse hepatocytes 
[32], and ICE-normalized Hi–C data from wild-type 
and CTCF auxin-depleted mouse embryonic stem cells 
(mESCs) [17]. All mouse data sets were aligned to the 
mm9 reference genome. Autosomes were used for all 
analyses. K562 chr9 and chr22 were removed due to their 
translocation. Hi–C data from ENCODE cell lines was 
normalized using the provided Knight–Ruiz normaliza-
tion factors. HPC-7 Hi–C data was normalized by divid-
ing the counts in each bin by the sum of the bin’s row and 
the sum of the bin’s column. Intrachromosomal Multi-
MDS was performed for each comparison pair.

Yeast RNA-seq read counts per gene and Nup60 ChIP-
seq IP and input reads were from [30]. Nup60 ChIP-seq 
data was aligned to the sacCer3 reference genome and 
broad peak calling was performed with MACS2. Sac-
charomyces uvarum gene annotations were from [41]. 
ChIP-seq data for ENCODE cell lines aligned to the hg19 
reference genome was downloaded from http://www.
encod eproj ect.org [42]. Replicated broad peak calls were 
used for relocalization enrichment analysis, and signal p 
value was used for browser shots. IDEAS 20-state anno-
tation based on Roadmap Epigenomics data was from 
[43].

Algorithm
MultiMDS uses a novel joint multidimensional scaling 
(MDS) algorithm, which simultaneously embeds two 
distance matrices in a lower dimensional space while 
minimizing the weighted sum of squared distances 
(SSD) between the embeddings. MultiMDS incorporates 
weights representing the expected similarity between the 
distance matrices, which we refer to as similarity weights. 
We used equal similarity weights for all loci, equivalent 
to a single global parameter which is selected empirically 
for each pairwise comparison (see below).

Assume we have N items observed under two condi-
tions. Each condition has an N × N distance matrix D. 

http://www.encodeproject.org
http://www.encodeproject.org
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The output of our algorithm is two N × m coordinate 
matrices X1 and X2, where m is the number of dimen-
sions of the embedding (3 in our analyses).

The algorithm minimizes stress, which is calculated as

For c = 1 or c = 2, dij(Xc) is the Euclidean distance 
between points i and j in Xc, δijc is the distance between 
points i and j from distance matrix Dc, wi is the similarity 
weight for point i, and di(X1, X2) is the Euclidean distance 
between point i in D1 and point i in D2.

We seek to find a compact expression for SSD, 
∑

wid
2
i (X1,X2) , similar to [44]. Consider the weighted 

squared distance for locus i, wid
2
i (X1,X2) . Let x1a be col-

umn a of the coordinate matrix X1, i.e., the ath dimen-
sion of the embedding. Let ei be column i of the identity 
matrix I:

where Ei is a matrix with eii= 1 and all other elements 
zero.

where W is a matrix with wii= wi and all other elements 
zero.

Combining with Eq. 8.27 in Borg and Groenen gives

τ(X1, X2) achieves its minimum when ∇τ (X1,Z) = 0 . 
Holding X2 constant, we calculate the gradient and solve 
the system of linear equations as follows:

σ(X1,X2) =
∑

i<j

(
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+
(
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)2

+
∑
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,

∑

wid
2
i (X1,X2) = TrX

′
1WX1

− 2TrX
′
1WX2 + TrX

′
2WX2,

σ(X1,X2) ≤ η2δ1 + TrX
′
1X1 − 2TrX

′
1B(Z1)Z1

+ η2δ2 + TrX
′
2X2 − 2TrX

′
2B(Z2)Z2 + TrX

′
1WX1

− 2TrX
′
1WX2 + TrX

′
2WX2 = τ (X1,Z).

This is the update formula for X1, where W+ is the 
Moore–Penrose inverse of W. The update formula for X2 
is calculated similarly. The algorithm alternately updates X1 
and X2 using the coordinates calculated at the previous step.

Implementation
MultiMDS was implemented in python as a modifica-
tion of miniMDS [25]. The joint MDS algorithm was 
implemented using a modification of MDS from scikit-
learn [45]. Hi–C data must be normalized to correct for 
biases prior to using MultiMDS. In addition, MultiMDS 
normalizes each data set by dividing by its mean, so that 
the data sets will approximately have the same scale. 
Loci with zero counts in both data sets are excluded. 
By default, distances are calculated as (contact fre-
quency)−¼ [46], but MultiMDS allows this conversion 
factor to be changed by users. Contact frequencies of 

zero were converted to distances of zero, which are 
ignored by the MDS algorithm. MultiMDS also sup-
ports interchromosomal inference and alignment.

MultiMDS incorporates a small distance decay prior 
to reduce noise. The corrected contact frequency is cal-
culated as ccorrected = cobserved ∗ (1− k)+ cexpected ∗ k , , 
where cobserved is the observed contact frequency, cexpected 
is the average contact frequency for loci pairs with the 
same linear separation, and k is a weight parameter. k is 
set to 0.05 by default, because we have found that this is 
the smallest value that can consistently produce visually 
interpretable structures. Without this prior, structures 
appear as random tangles (Additional file 1: Fig. S24).

Parameter selection
Similarity weights were selected by identifying the 
value at which increasing the similarity weight does not 
further increase reproducibility (see Fig. 1c).

2X1 − 2B(Z) Z+ 2WX1 − 2WX2 = 0

(W + I)X1 = WX2 + B(Z)Z

Xupdate = (W + I)+[WX2 + B(Z)Z].
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Comparison to independent structural inference 
and alignment
To compare MultiMDS with an alternate approach that 
aligns independently estimated genome structures, we 
first performed structural inference using miniMDS on 
each Hi–C data set independently. The two structures 
were then aligned using the Kabsch algorithm [24], which 
minimizes the RMSD between two static structures.

Hi–C simulation
sim3C was used to simulate 150-bp HindIII Hi–C reads 
from hg19 chr21 (linear). Because sim3C randomly gen-
erates CIDs, we modified the code to use custom nonran-
dom CIDs: chromosome start to 20 Mb, 20 to 39/40 Mb, 
and 40 Mb to chromosome end. Modified code is avail-
able on GitHub.

Compartment analysis
Compartment scores were calculated as described by 
[27]. Briefly, a correlation matrix was calculated from 
the observed/expected Hi–C contact matrix. Com-
partment scores were defined as PC1 of the correlation 
matrix. PC1 accounts for most of the variance in the cor-
relation matrix (up to 90% in high-coverage data sets). 
Scores were normalized to range between − 1 and 1. The 
active compartment was defined as the compartment 
with greater enrichment for the IDEAS states 10_TssA, 
14_TssWk, 8_TssAFlnk, 17_EnhGA, 6_EnhG, 4_Enh, 
5_Tx, and 2_TxWk [43]. The compartment axis for each 
chromosome was identified using linear support vec-
tor regression implemented in scikit-learn with default 
parameters [45].

To prevent bias due to some axes being physically 
longer, the fraction of relocalization occurring along each 
axis was normalized by dividing by the axis length, which 
was calculated as the average distance of each coordinate 
from the centroid along that axis. Differences in normal-
ized fractional relocalization were calculated using a two-
sided independent-sample t test.

Relocalization peak analysis
Peaks in relocalization magnitude were called using a 
continuous wavelet transform (CWT) [47], with peak 
widths ranging from 1 to 10. A CWT identifies peaks in 
noisy data based on their characteristic shape, without 
requiring smoothing. Relocalization peaks with abso-
lute compartment score differences of less than 0.2 were 
overlapped with ChIP-seq peaks and IDEAS states using 
bedtools to calculate coverage [48], and p values were cal-
culated using a two-sided independent sample t test. The 
IDEAS states 17_EnhGA, 6_EnhG, 19_Enh/ReprPC, 18_
Enh/Het, 4_Enh, and 11_EnhBiv were called enhancers, 

16_TxRepr, 5_Tx, and 2_TxWk were called transcribed, 
and 13_ReprPC, 12_Het/ReprPC, and 1_ReprPCWk 
were called polycomb repressed.

Differential ChIP‑seq peaks
MACS2 [49] was used to call broad peaks from Nup60 
ChIP-seq data under glucose and galactose conditions 
separately. Glucose and galactose peaks were merged, 
and edgeR [50] was run on the tag counts in each peak 
to identify differential enrichment between conditions. 
Because replicates were not available, the biological coef-
ficient of variation was estimated as 0.1.
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