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METHODOLOGY

The SMART App: an interactive web 
application for comprehensive DNA methylation 
analysis and visualization
Yin Li, Di Ge and Chunlai Lu* 

Abstract 

Background: Data mining of The Cancer Genome Atlas (TCGA) data has significantly facilitated cancer genome 
research and provided unprecedented opportunities for cancer researchers. However, existing web applications for 
DNA methylation analysis does not adequately address the need of experimental biologists, and many additional 
functions are often required.

Results: To facilitate DNA methylation analysis, we present the SMART (Shiny Methylation Analysis Resource Tool) 
App, a user-friendly and easy-to-use web application for comprehensively analyzing the DNA methylation data of 
TCGA project. The SMART App integrates multi-omics and clinical data with DNA methylation and provides key inter-
active and customized functions including CpG visualization, pan-cancer methylation profile, differential methylation 
analysis, correlation analysis and survival analysis for users to analyze the DNA methylation in diverse cancer types in a 
multi-dimensional manner.

Conclusion: The SMART App serves as a new approach for users, especially wet-bench scientists with no program-
ming background, to analyze the scientific big data and facilitate data mining. The SMART App is available at http://
www.bioin fo-zs.com/smart app.
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Introduction
All cancers arise as a result of the accumulation of 
somatic mutations, copy number alterations, and epige-
netic modifications that alter transcription and protein 
expression. Thus, studies of molecular features such as 
DNA methylation may reveal the underlying mechanisms 
of carcinogenesis and progression. DNA methylation, the 
addition of a methyl group to DNA, plays a critical role in 
regulating gene expression [1]. It has been reported that 
DNA methylation at the promoter regions is often nega-
tively correlated with gene expression while DNA meth-
ylation in gene bodies is often positively correlated with 
gene expression [2]. Abnormal DNA methylation pat-
terns are found in every type of human cancer [3]. Many 

previous studies have shown that DNA methylation is 
involved in many aspects of carcinogenesis and provides 
potential biomarkers for evaluating the diagnosis and 
prognosis of cancer [4–6]. A recent study has also shown 
the association between DNA methylation and somatic 
copy number aberration, suggesting a much more com-
plex mechanism beyond this modification [7].

The Cancer Genome Atlas (TCGA), a project supported 
by the National Cancer Institute (NCI) and National 
Human Genome Research Institute (NHGRI), hosts tre-
mendous amount of multi-omics data and allows system-
atic study of the genetic or epigenetic basis of cancer [8]. 
However, accessing and analyzing the DNA methylation 
data from TCGA database is quite difficult for those scien-
tists who have no computational background. Therefore, 
constructing easy-to-use applications for analyzing the 
DNA methylation data of TCGA database is demanded.
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MethHC (http://methh c.mbc.nctu.edu.tw), Wanderer 
(http://mapla b.imppc .org/wande rer/), MEXPRESS (https 
://mexpr ess.be), and MethSurv (https ://biit.cs.ut.ee/meths 
urv/) are examples of web-based tools that allow research-
ers to integrate, analyze, and visualize DNA methyla-
tion [9–12]. MethHC enables users to browse the top 250 
hyper- or hypo-methylated genes in 18 cancer types. Wan-
derer allows users to analyze DNA methylation and gene 
expression in a regional framework, MEXPRESS allows 
users to look at DNA methylation data in relation to its 
genomic location, and MethSurv can associate overall can-
cer survival with DNA methylation levels across a large 
body of TCGA data and many cancers. Although these 
tools are exceptionally valuable, they do not fully unlock 
the potential of the publicly available data. For example, 
they do not offer a function for users to explore the correla-
tion between DNA methylation and transcript expression. 
In addition, none of the above tools help users visualize 
the chromosomal distribution of differential methylated 
CpGs in diverse cancer types. Therefore, we developed 
the SMART App, which enables users to analyze DNA 
methylation and its association with other omics data. The 
SMART App can facilitate DNA methylation data mining 
and help reveal the complexity of epigenetic modifications.

Results
Features
The SMART App offers interactive functions for users to 
analyze the DNA methylation in diverse cancer types in a 
multi-dimensional way.

Home
The home page first displays the number of DNA meth-
ylation samples available from TCGA project, colored by 
sample types (i.e., Normal and Tumor), for users to gain 
an overview of the sample size of the cancer type of inter-
est. Next, the SMART App provides a quick search inter-
face. Users can enter a gene symbol (e.g., ERBB2) into the 
‘Quick start’ box to search for a gene of interest. By click-
ing the “Go” button, a circular plot showing the chromo-
somal distribution of all associated CpGs of the input gene 
will be displayed. To help users gain more useful informa-
tion about the CpGs and their genomic locations along 
with transcripts, a detailed segment plot highlighting the 
transcripts, exons, UTR, CDS, CpG island regions, shelves 
and shores is displayed below (Fig.  1). This segment plot 

can help researchers to identify potential methylation-
expression related CpGs. The panel below summarizes the 
detailed information these probes, and users can select one 
of these probes to view its pan-cancer methylation profile 
and identify aberrantly methylated sites for further analy-
sis. Besides, users can also view the CpG-aggregated pan-
cancer methylation profile. Users can select multiple CpGs 
at a time to explore the mean or median methylation of 
the selected CpGs. We previously identified that TRIM58 
is a novel prognostic-related methylation-driven gene in 
lung squamous cell carcinoma [13]. Using the quick search 
function of the SMART App, it is easy to find that mean 
methylation level of TRIM58 is significantly higher not 
only in lung squamous cell carcinoma but also in many 
other cancer types including breast cancer, head and neck 
carcinoma, and lung adenocarcinoma, indicating its poten-
tial role in carcinogenesis in these cancer types.

Differential CpGs
Differential analysis is a common approach in cancer 
research by comparing tumor samples vs. normal sam-
ples for identifying aberrantly methylated CpGs. Mean-
while, clustering of the CpGs with similar methylation 
patterns along the chromosomes may reflect the genomic 
mechanisms leading to specific methylation characteris-
tics [14]. Therefore, the SMART App allows users to set 
custom cut-off values for a given cancer type to dynami-
cally obtain differentially methylated CpGs and their 
chromosomal distributions (Fig.  2). The delta |Beta-
value|/delta |M value| of each probe is calculated as the 
mean Beta-value/M value in tumor samples minus the 
mean Beta-value/M value in normal samples. p value 
is calculated using the Wilcoxon rank sum test, and is 
adjusted using the Benjamini–Hochberg method. More-
over, for users who only want to visualize specific CpGs, 
the SMART App offers an extra function that allows 
users to draw CpG flexibly. The detailed description can 
be found at the website.

Methylation DIY
This module provides functions for users to compre-
hensively analyze DNA methylation taking other omics 
data and clinical stages into consideration. The first 
panel generates custom box plots for users for compare 
CpGs of genes between normal and tumor samples in a 
given cancer type. Users can select multiple probes at 

Fig. 1 Genomic information of the gene ERBB2. The segment plot showing the detailed information of genomic locations of CpGs of ERBB2, 
highlighting transcripts, exons, UTR, CDS (coding sequence), CpG island, shelves, and shores. The name and the type of each transcript are given. 
The genomic length is shown below. By default, the distance between any adjacent two lines stands for 1 k. Users can set the distance scale. The 
yellow arrow at the top stands for the strand direction, that is, towards right, +, towards left, −. The coverage of the CpG islands are displayed as the 
red regions

(See figure on next page.)
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the same time for easy visibility and interpretation. The 
returned box plots will display all the selected probes 
plus an aggregation box plot showing the mean/median 
methylation of all the selected probes. The second 
panel plots methylation by pathological stages based 
on the TCGA clinical data. Two options are available, 
namely, major stage and sub-stage. For example,  if 
users choose major stage for plotting, stage IIA/IIB will 
be included in the stage II group. Here, using SMART 
App, we can easily find that TRIM58 (cg10983544) 
is much hyper-methylated in stage II group in lung 
squamous cell carcinoma, indicating its clinical rel-
evance (Fig.  3b, p value = 0.016). Somatic mutations 
can also affect DNA methylation. To help users study 

the effect of somatic mutations on DNA methylation, 
the SMART App offers a function for plotting box plots 
comparing methylation between mutation and wild-
type groups. For example, IDH1 mutation can cause 
hyper-methylation in  lower grade glioma (LGG) [15]. 
When IDH1 is selected, the returned box plots showed 
that cg07640666, cg17353896 and cg24324379 were 
significantly hyper-methylated in the mutation group 
(Fig. 3a, p value < 0.05). Sun et al. observed the correla-
tion between CNV and methylation and discussed the 
possible mechanisms relating to this event [7]. Here, 
the SMART App provides a function for researchers 
to study the possible association between CNV and 
DNA methylation. The results are displayed as box 
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Fig. 2 Visualization of the differentially methylated CpGs in BLCA with delta |Beta-value| > 0.25 and p value < 0.01. a There are 6007 
hyper-methylated CpGs in BLCA, with chromosome 1, 19 containing the highest number of hyper-methylated CpGs, and chromosome Y containing 
the least. b There are 23,249 hypo-methylated CpGs in BLCA. c Custom chromosome plot showing the selected hyper- and hypo-methylated CpGs 
on all chromosomes. d Custom chromosome plot showing the selected CpGs on chromosome 1



Page 5 of 9Li et al. Epigenetics & Chromatin           (2019) 12:71 

Fig. 3 Methylation DIY. a cg07640666, cg17353896, and cg24324379 are hyper-methylated in IDH1 mutation group in LGG (M value, p value < 0.05). 
b Major stage plot showing cg10983544 (TRIM58) is much hyper-methylated in stage II lung squamous cell carcinoma (M value, p value = 0.016). 
c cg04902327 (TRIM58) shows a lower level of methylation with low-level copy number amplification, whereas the other CpGs of TRIM58 show a 
positive correlation with CNV in lung squamous cell carcinoma (M value, p value < 0.05). − 2: homozygous deletion; − 1: single copy deletion; 0: 
diploid normal copy; + 1: low-level copy number amplification; + 2: high-level copy number amplification

(See figure on next page.)

plots showing the correlation between CNV and meth-
ylation. With the SMART App, it is very interesting to 
observe that TRIM58 (cg04902327) shows a lower level 
of methylation with low-level copy number amplifica-
tion, whereas other CpGs of TRIM58 show a positive 
correlation with CNV in lung squamous cell carcinoma 
(Fig. 3c, p value < 0.05).

Correlation
DNA methylation is often correlated with gene expres-
sion. The correlation function of SMART App performs 
correlation analysis between gene expression and methyl-
ation for any given sets of TCGA, using methods includ-
ing Pearson, Spearman, and Kendall correlation statistics. 
The UCSC Xena provides the re-computed expression 
data of TCGA for 198,619 transcripts. Accordingly, there 
are two levels available, and one can choose to analyze 
the correlation at gene level or transcript level. When 
analyzing the correlation at transcript level, a segment 
plot highlighting the genomic locations of the tran-
script and CpGs will be displayed, and the distances of 
each probe to TSS will also be shown in the table below 
for users to locate the ones at the promoter region. The 
results are displayed as scatter and distribution plots 
(Fig. 4 and Additional file 1: Figure S1).

Survival
The SMART App performs overall survival (OS) and 
disease-free internal (DFI)-related survival analysis 
based on methylation levels. This function allows users 
to select their custom cancer types for overall or disease-
free survival analysis. Cox regression analysis is a popular 
method for evaluating the prognostic value of individual 
variables. To efficiently analyze the survival significance 
of methylation, the SMART App offers both univariate 
and multivariate Cox regression analyses. When per-
forming multivariate Cox regression analysis, users can 
adjust for potential confounding factors, including age, 
gender, race and pathological stage. Users can copy and 
paste a list of CpGs into the box, and select the cancer 
type of interest to conduct Cox regression analysis. The 
hazard ratio, 95% confidence interval, z score, and p value 
will be given. Once users have identified the significant 
variables, they can use the SMART App to draw survival 

curves. The thresholds for high/low methylation level 
cohorts can be adjusted by users.

Comparison with existing tools
Web tools to analyze DNA methylation of TCGA pro-
ject include methHC, Wanderer, MEXPRESS, and Meth-
Surv. MethHC was introduced in 2014 and enables users 
to identify highest/lowest methylated genes, perform 
hierarchical cluster analysis, explore methylation profile 
across tumors and conduct correlation analysis. How-
ever, the latest update of methHC was in 2014. Wan-
derer is an interactive web application to explore DNA 
methylation and gene expression. It provides a single-
page interface to explore DNA methylation in a regional 
framework. MEXPRESS is a data visualization tool for 
DNA methylation analysis and was first introduced in 
2015. Now, it has been updated, adding more data and 
generating fancier figures. MethSurv is a shiny applica-
tion that mainly focuses on the clinical impacts of DNA 
methylation. While these tools are extraordinarily valu-
able, many extra functions are not adequately addressed 
by them. M value has been reported to be more statis-
tically valid for the differential analysis [16].  Although 
differential analyses are commonly performed by these 
tools, none of them allow users to use the M value for dif-
ferential analysis. None of these tools allow users to pick 
a cancer type and visualize the chromosomal distribution 
of the aberrantly methylated CpGs. In addition, none of 
the existing tools allow users to analyze the correlation 
between methylation and expression at transcript level. 
Besides, none of the tools provide customizable selection 
of methylation thresholds for patient cohort partition-
ing in survival curves plotting. A detailed comparison is 
shown in Table 1.

Discussion
The SMART App is an interactive web application for 
DNA methylation analysis based on the TCGA data-
base. The SMART App enables experimental biologists 
without any computational programming background 
to perform various analyses relating to DNA meth-
ylation in diverse cancer types. Using the SMART App, 
one can easily explore the large DNA methylation data, 
ask specific scientific questions, and validate their find-
ings. For example, one can easily find that CpGs such as 
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cg10983544 and cg20429172 are located at the promoter 
region of the transcript of TRIM58, and may ask whether 
these CpGs are aberrantly methylated and whether the 
methylation changes of these CpGs will lead to gene 
expression alterations. One can also identify significantly 
hyper- and hypo-methylated CpG-based custom thresh-
olds. Moreover, one can explore the correlation between 
methylation and other omics and clinical data, analyze 
the prognostic value of CpGs and draw survival curves. 
Meanwhile, the flexible customization parameters of the 

SMART App also enable users to customize the result 
visualization. The SMART App is a user-friendly and 
intuitive tool for unlocking the potential value of the 
genomic data in TCGA. It complements well with other 
available tools.

Conclusion
The SMART App is a web-based tool to explore and 
interpret the DNA methylation data across 33 can-
cer types from TCGA database. The source code of the 

Fig. 4 Spearman correlation between expression (ZNF582) and DNA methylation (M value) in lung squamous cell carcinoma. a Gene-level 
correlation showing that the expression of ZNF582 is significantly negatively associated with the methylation of cg24733179, cg11740878, 
cg09568464, cg02763101, cg22647407, cg08464824, cg13916740, cg24039631, cg20984085, and cg25267765. b Transcript-level correlation 
showing that the expression of ENST00000301310.8 is significantly negatively associated with the methylation of cg24733179, cg11740878, 
cg09568464, cg02763101, cg22647407, cg08464824, cg13916740, cg24039631, cg20984085, and cg25267765
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SMART App is available for users to download under 
GPLv3 license.

Methods
The SMART App is developed entirely in the R program-
ming language using the Shiny framework and is freely 
available for all users. There is no login requirement for 
accessing any features in the SMART App. The SMART 
App has been most extensively tested in a Safari browser 
environment and is also compatible with other popu-
lar web browsers such as Chrome, Firefox, and Internet 
Explorer.

The data used in the SMART App are directly pulled 
down from the TCGA Pan-Cancer cohort of UCSC Xena 
public data hubs (https ://xenab rowse r.net) upon users’ 
request using UCSCXenaTools, including gene expression 
(TOIL re-computed TPM), transcript expression (TOIL 
re-computed TPM) [17], DNA methylation (Human-
Methylation450k; Primary Solid Tumor and Solid Nor-
mal Tissue), somatic mutation (Gene-level non-silent 
mutation), copy number variation (Gene-level GISTIC2 
thresholded), phenotype and clinical information [18]. 
Gene-level non-silent mutation and gene-level thres-
holded copy number variation are used because they 
offer easy-to-interpret values (i.e., 0 for wild type and 1 
for mutation for somatic mutation; homozygous deletion 
(− 2), single copy deletion (− 1), diploid normal copy (0), 
low-level copy number amplification (+ 1) and high-level 
copy number amplification (+ 2) for copy number varia-
tion). For methylation probes, we used the hg38 coordi-
nates provided by Zhou et  al. (http://zwdzw d.githu b.io/
Infin iumAn notat ion) [19]. Gene, transcript and exon 
coordinates were obtained from GENCODE (https ://
www.genco degen es.org, Release 31, GRCh38.p12).

Both Beta-value and M value are commonly used 
in DNA methylation analysis. The M value has been 
reported to have a more dynamic range, and is more 
appropriate for statistical analysis [16]. Whereas the 
Beta-value is much more biologically interpretable. 
Therefore, these two types of methylation values are 
available in the SMART App.

The SMART App outputs consist of figures and 
tables, which are available for users to download. 
Figures are rendered as Portable Document Format 
(PDF), which can be further edited using Adobe Illus-
trator.  Tables are generated by DT R package  (https ://
rstud io.githu b.io/DT/) allowing for data querying and 
selection.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1307 2-019-0316-3.

Additional file 1: Figure S1. Distribution plots showing the correlation 
between expression and Methylation. Each bar represents a sample, 
the names of the gene/transcript and CpGs are shown on the right, the 
methylation and expression values are shown on the left. The samples are 
reorders according to the expression value. A. Gene-level distribution plot. 
B. Transcript-level distribution plot.

Abbreviations
TCGA : The Cancer Genome Atlas; SMART : Shiny Methylation Analysis Resource 
Tool; CNV: copy number variation.
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Table 1 Functionalities comparison between the SMART App and other tools

A yes means this function is available

SMART App methHC Wanderer MEXPRESS MethSurv

Data source TCGA TCGA TCGA TCGA TCGA 

Latest update 2019 2014 2018 2019 2018

Genomic location visualization Yes No Yes Yes No

Pan-cancer methylation profile Yes Yes No No No

Differential analysis Yes Yes Yes Yes Yes

Correlation with other omics data Yes No No Yes No

Correlation with gene expression Yes Yes Yes Yes Yes

Correlation with transcript expression Yes No No No No

Cox regression analysis Yes No No No Yes

Survival analysis with custom threshold Yes No No No Yes

Hierarchical cluster analysis No Yes No No Yes

Methylation M value Yes No No No No
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