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Abstract 

Eukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements 
such as enhancers to interact with gene promoters through physical contacts in three‑dimensional space. Recent 
chromosome conformation capture methodologies such as Hi‑C have enabled the analysis of interacting regions of 
the genome providing a valuable insight into the three‑dimensional organisation of the chromatin in the nucleus, 
including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi‑C data, however, 
is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering 
the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the 
downstream analysis of Hi‑C data with particular focus on methods that prioritise potentially functional interactions. 
We classify three groups of approaches: structural‑based discovery methods, e.g. A/B compartments and topologi‑
cally associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data 
integration to narrow down useful interaction information. Careful use of these three approaches is crucial to success‑
fully identifying potentially functional interactions within the genome.
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Background
The three-dimensional (3D) architecture of the eukary-
otic genome has been shown to be an important factor 
in regulating transcription [1–3]. In the nucleus, DNA is 
folded into a highly organised structure, allowing tran-
scriptional and regulatory machinery to be in specific 
nuclear territories for efficient usage. The impact of DNA 
folding and the resulting physical interactions can have 
dramatic impacts on the regulation of the genes, enabling 
non-coding regions such as regulatory elements (e.g. 

enhancers and silencers) to act on distally located gene 
promoters with disruption of chromosomal organisa-
tion increasingly linked to disease [4–6]. However, while 
highly organised, the folding structure of the 3D genome 
can also be highly dynamic to allow for the flexibility 
and modularity to facilitate regulatory action across a 
wide-range of cell types and biological processes, such as 
development, immune homeostasis, cancer and diseases.

In recent decades, the development of chromo-
some conformation capture assays and high-through-
put sequencing has facilitated the construction of 3D 
genomes at high resolution, enabling the identification 
of cell type and tissue-specific 3D interactions between 
regions in the genome. However, the analysis of such 
data is complicated by the massive amount of identified 
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physical interactions, hindering the detection and inter-
pretation of interactions that are biologically meaning-
ful. In this review, we introduce the background of 3D 
genome structure and its components, followed by a 
summary of the protocols that are commonly used to 
study 3D genome architecture in recent years, focusing 
on Hi-C protocols and other derived methods, whilst 
the use of microscopy to image 3D genome organisa-
tion has also been recently reviewed [7]. We then thor-
oughly review current in silico methods for identification 
of potentially functional interactions, which are contacts 
with higher chance to be biologically functionally rel-
evant, and categorise them into three methodological 
groups.

Chromosome architecture and gene regulation
Within eukaryotic nuclei, chromosomal DNA is con-
densed and folded into highly organised 3D structures, 
with distinct functional domains [8, 9]. A key conse-
quence of chromosome folding is that it can bring DNA 
regions that are far away from each other on the same 
linear DNA polymer (i.e. intra-chromosomal), into close 
proximity, allowing direct physical contact to be estab-
lished between regions. Interchromosomal interactions 
may also play an important role in transcriptional regula-
tion but are less studied. The best characterised examples 

of this type of interaction include the clustering of ribo-
somal genes to form the nucleolus and the clustering of 
olfactory receptor genes to ensure the monogenic and 
mono-allelic expression in an individual olfactory neuron 
[10].

The most basic level of chromosome organisation is 
chromatin “Loop” structures (Fig. 1A). Chromatin loops 
are formed based on a loop extrusion model, where linear 
DNA is squeezed out through the structural maintenance 
of chromosomes (SMC) cohesin complex until the com-
plex encounters convergent CTCF bound at loop anchor 
sequences [8, 11–14]. Chromatin loops can either bring 
distal enhancers and gene promoters into close proxim-
ity to increase gene expression, or exclude an enhancer 
away from the loop to initiate boundaries to repress gene 
expression [15–17]. The archetypal chromatin loop-
ing factors are the CCCTC-binding protein (CTCF) and 
Cohesin complex [18–20], with the initial transient chro-
matin loops are created by the Cohesin complex during 
the extrusion process, or anchored on one CTCF bind-
ing site while the other anchor moving dynamically [11, 
21, 22]. Moreover, specific transcription factors such as 
EKLF, GATA-1, FOG-1, NANOG and YY1 [23–28] were 
confirmed to play important roles in the regulation of 
chromatin looping.

Fig. 1 Illustration of genome architecture and the corresponding Hi‑C interaction maps. Top panel: interaction heatmaps A, B, C, D are in different 
scales (kb or Mb per pixel) to correlate with the diagrams of 3D structures in the bottom panel, yellow boxes in A and B are identified TADs and 
small blue boxes in A indicate chromatin loops. The purple box in A is a frequently interacting region, with its classical “V” shape pattern coloured 
in purple dotted lines. Heatmaps were generated using Juicebox [29] with published Hi‑C data of GM12878 [3]. Bottom panel: diagrams of 3D 
structures in the genome
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Chromatin folding and DNA looping in particular leads 
to the formation of large-scale chromatin structures such 
as topologically associated domains (TADs) and chro-
mosome compartments (Fig. 1B) [30]. TADs are defined 
by chromatin interactions occurring more frequently 
within the TAD boundaries, with TAD boundaries often 
demarcating a change in interaction frequency [30]. TAD 
boundaries are also enriched for the insulator-binding 
protein CTCF and cohesin complex [19, 20]. CTCF motif 
orientation appears to play a role in demarking TAD 
boundaries with some studies indicating that the major-
ity of identified TADs (~ 60–90%) have a CTCF motif at 
both anchor boundaries with convergent orientation [3, 
31, 32]. This is consistent with the loop extrusion model 
mentioned above, suggesting that the formation of most 
TADs are form by extrusion and are strictly confined by 
boundaries established by ‘architectural’ proteins such 
as CTCF and SMC cohesin complex [33], along with the 
boundaries engaging with strong 3D interactions [34]. 
Moreover, experimental inversion of CTCF orientation 
or complete removal of the CTCF binding sites have been 
shown to disrupt the formation or shift the boundary of 
a TAD [14, 16, 32], further emphasising the important 
role of CTCF defining TAD boundaries. The size of TADs 
are highly dependent on the resolution of the data and 
the chosen TAD caller and parameters [35], it can vary 
from hundreds of kilobases (kb) to 5 megabases (Mb) in 
mammalian genomes [36, 37], and also show significant 
conservation in related species [38], suggesting that they 
may serve as the functional base of genome structure and 
development. With higher sequencing depth, patterns of 
interactions across regions within a TAD can be further 
divided into “sub-TADs” with a median size of 185  kb 
using one kilobase resolution data [3], enabling finer 
scale investigation of the genome structure [39, 40]. In 
addition to “sub-TADs”, many other terms of TADs with 
different sizes and features have been proposed, includ-
ing “micro-TADs” [41], “mega-domains” [42] and “super-
TADs” [43]. However, functional distinction between the 
“conventional TADs” and them is still unclear. Evidence 
has shown that TADs are crucial structural units of long-
range gene regulation [44–47], with interactions such 
as promoter–enhancer looping mostly found within the 
same TADs [48], and abnormal interactions across TADs 
(inter-TADs) can lead to significant regulation of expres-
sion level of important genes [49].

At a multi-megabase scale, the genome organisation is 
spatially segregated into euchromatin (gene-rich regions) 
or heterochromatin (gene-poor regions) to form active 
and inactive domains called ‘Compartments’ (Fig.  1C) 
[2]. This compartmentalisation of chromosome fold-
ing depicts the global organisation of chromosomes 
in the nucleus, where compartment A corresponds to 

gene-dense, euchromatic regions, and compartment B 
corresponding to gene-poor heterochromatin. Using 
higher resolution data, the genome can be further 
grouped into six sub-compartments, compartment A 
is separated into A1 and A2 whereas compartment B is 
separated into B1, B2, B3 and B4, with each one associ-
ated with specific histone marks [3]. Sub-compartments 
A1 and A2 are enriched with active genes and the acti-
vating histone marks H3K4me3, H3K36me3, H3K27ac 
and H3K4me1. Sub-compartments A1 and A2 are also 
depleted in nuclear lamina and nucleolus-associated 
domains (NADs). B1 domains correlate with H3K27me3 
positively and H3K36me3 negatively, B2 and B3 are 
enriched in nuclear lamina but B3 is depleted in NADs, 
and B4 is an 11-Mb region, containing lots of KRAB-ZNF 
genes [3].

The interaction of transcription factors bound at regu-
latory elements, such as promoters, enhancers and super-
enhancers, mediate the transcription level of a gene via 
interactions which are the direct result of the 3D chro-
mosome structure, but which appear to be long-distance 
interactions when viewed through lens of a linear chro-
mosome [50–52]. One early and well-characterised 
example is the interaction between beta-globin locus and 
its locus control region (LCR) [53]. During the devel-
opment and differentiation of erythroid in human and 
mouse, the LCR, which is located 40–60  kb away from 
beta-globin genes, contains the hypersensitive sites that 
are exhibiting strong enhancer function and contact-
ing to beta-globin genes distally via chromatin loops to 
regulation gene expressions [54–56]. Hox gene clusters, 
essential for patterning the vertebrate body axis, are also 
governed by a rich enhancer interaction network. Using 
chromatin conformation capture methods, a number 
of studies found that the transcriptional activation or 
inactivation of Hox clusters requires a bimodal transi-
tion between active and inactive chromatin [30, 57–60]. 
Taken together, the 3D genome structure governing long-
distance contacts can build complex gene regulatory net-
works, allowing for either multiple enhancers to interact 
with a single promoter or a single enhancer to contact 
multiple promoters [61]. Disruption of these long-range 
regulatory networks is increasingly being linked to both 
monogenic and complex diseases [62, 63].

Hi‑C assays to quantify chromatin interactions
In order to investigate the 3D genome architecture, a 
series of protocols called chromosome conformation 
capture (3C) assays have been developed that specifi-
cally capture the physical interactions between regions of 
DNA [1, 2, 64–66]. A suite of 3C-derived high-through-
put DNA sequencing assays have been developed, 
including circular chromosome conformation capture 
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sequencing (4C-seq) [64, 67], chromosome conformation 
capture carbon copy (5C) [65], chromatin interaction 
analysis by paired-end tag sequencing (ChIA-PET) [66], 
enrichment of ligation products (ELP) [68] and higher 
resolution chromosome conformation capture sequenc-
ing (Hi-C) [2], which vary in complexity or the scale of 
the interactions that are captured. The initial 3C method 
used PCR to quantify specific ligation products between 
a target sequence and a small number of defined regions 
[1]. 4C-seq, known as the “one vs all” method, uses an 
inverse PCR approach to convert all chimeric molecules 
associated with a specific region of interest generated 
in the proximity ligation step into a high-throughput 
DNA sequencing library [67]. 5C increased the number 
of regions that could be captured by multiplexing PCR 
reactions [65], and it is also considered as the first “many 
vs many” approach and has been used to examine the 
long-range interactions of between transcription start 
sites and approximately 1% of the human genome [69]. 
ChIA-PET implements a similar approach, however uses 
a specific, bound protein, generally a transcription fac-
tor protein, generating a protein-centric interaction pro-
file [31]. ELP implements a double digestion strategy to 
improve the enrichment of 3C products in the library and 
is able to generate a detailed genome-wide contact map 
of the yeast genome [68].

Compared to other approaches, Hi-C, also known as 
the genome conformation capture method [70], is the 
first “all vs all” method of genome-wide, 3C-derived assay 
to capture all interactions in the nucleus, allowing for 
a more complete snapshot of nuclear conformation at 
the global level [36]. Hi-C works through cross-linking 
DNA molecules in close proximity via a formaldehyde 
treatment, preserving the 3D interaction between two 
genomic regions. The cross-linked DNA is then usually 
fragmented using a restriction enzyme, such as the 6-bp 
recognition enzyme HindIII [30, 71] or 4 bp cutter MboI, 
DpnII and Sau3AI, and the resultant DNA, ends held 
in close spatial proximity by the DNA cross-links, are 
ligated into chimeric DNA fragments. Subsequent steps 
convert these chimeric DNA fragments into linear frag-
ments to which sequencing adapters are added to cre-
ate a Hi-C library. The library is then sequenced using 
high-throughput sequencing technology, specifically 
limited to Illumina paired-end (as opposed to single-
end/fragment) DNA sequencing to enable the accurate 
identification of the two ends of the hybrid molecule [2]. 
In the initial development of Hi-C, the identification of 
Hi-C interactions was impacted by the number of spu-
rious ligation products generated as a result of the liga-
tion step being carried in solution allowing for greater 
freedom for random inter-complex ligation reactions to 
occur. The resolution of Hi-C interactions in these earlier 

approaches was also limited by the cutting frequency of 
a 6-base restriction enzyme, such as HindIII [2, 30, 72–
74]. To address these issues, an in situ Hi-C protocol was 
developed [3], where the ligation steps were performed 
within the constrained space of the nuclei, reducing the 
chance of random ligation [75, 76]. Furthermore, in situ 
Hi-C used a 4-base-cutter (such as MboI) for diges-
tion, increasing the cutting frequency in the genome 
and improving the resolution of captured interactions 
[3]. Using this method, the first 3D map of the human 
genome was constructed using the GM12878 cell line 
with approximately 4.9 billion interactions [3], enabling 
interaction resolution at the kilobase level. In recent 
years, the in situ Hi-C protocol has been developed fur-
ther to target different technical and/or biological ques-
tions (Table 1). 

Owing to the vast complexity of the Hi-C ligation prod-
ucts generated, it is often too costly to sequence samples 
to a sufficient depth to achieve the resolution necessary 
to investigate specific interactions such as promoter–
enhancer interactions, leading to the development of 
capture Hi-C (CHi-C) [82]. CHi-C employs a sequence 
capture approach, using pools of probes complementary 
to thousands of restriction fragments, to enrich for mol-
ecules containing the region of interest from the Hi-C 
library. This significantly reduces the complexity of the 
libraries and enables a significant increase in the number 
of detectable interactions within specific regions with-
out the need for ultra-deep sequencing. Therefore CHi-
C, has been used in many cases to analyse specific types 
of long-range interactions, such as interactions linked to 
promoter or enhancer regions. For example, CHi-C was 
recently used to characterise promoter interactions in 
17 human primary hematopoietic cells to demonstrate 
the highly cell type-specific nature of many promoter 
interactions even with a group of related cell types [51]. 
Similar to CHi-C, another series of approaches, includ-
ing Capture-C [83], NG Capture-C [84] and Tiled-C [85], 
that focus on capturing chromatin interaction of interest 
have been developed. Compared to the CHi-C protocols, 
they enrich the 3C library with biotinylated capture oli-
gonucleotides instead of enrich the biotinylated Hi-C 
library, allowing the library to retain maximal library 
complexity, which is important for analysing data from 
small cell numbers [85].

Like many other high-throughput sequencing 
approaches, Hi-C continues to be modified to improve 
the efficiency and resolution of the approach. DNase 
Hi-C was developed to reduce the bias introduced 
through the use of restriction enzymes (e.g. MboI recog-
nises GATC), due to the uneven distribution of restric-
tion sites throughout the genome [77, 93]. Instead, 
DNase Hi-C replaces the restriction enzyme digestion of 
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cross-linked DNA with the endonuclease DNase I that 
has a much reduced DNA sequence specificity to reduce 
bias in identifying Hi-C interactions. Commercial Hi-C 
library preparation kit such as Omni-C kit from Dovetail 
Genomics [94] exploits the use of DNase and is designed 
specifically to overcome limitations of only capturing 
Hi-C interactions near restriction sites. Similar to DNase 
Hi-C, Micro-C uses micrococcal nuclease (MNase) diges-
tion, enabling the generation of high-resolution contact 
maps at 200 bp to ~ 4 kb scale in budding yeast [78] and 
sub-kilobase resolution contact maps in mammalian 
cells [41, 95]. What’s more, BL-Hi-C uses HaeIII, which 
has higher cutting frequency in the human genome com-
pared to other 4-base cutter like MboI, to conduct diges-
tion and a two-step ligation optimisation to reduce the 
chance of ligating event of random DNAs, increasing the 
capture efficiency with active regions in the genome and 
reducing the probability of random ligation events [79]. 
In addition to increasing the capture efficiency, optimised 
protocols are now much more cost effective. For exam-
ple, DLO Hi-C [80] avoids biotin labelling and pull-down 
steps, and tagHi-C [81] uses Tn5-transposase tagmen-
tation, similar to ATAC-seq, to capture the chromatin 
structure with hundreds of cells.

The integration of Hi-C with other genomic applica-
tions, such as chromatin immunoprecipitation (ChIP), 
formaldehyde-assisted isolation of regulatory elements 
(FAIRE) or bisulfite treatment has also occurred. The 
ChIP-integrated approaches, including HiChIP and 
PLAC-seq, combining the in situ Hi-C with ChIP, gener-
ating a Hi-C library enriched for interactions associated 
with specific bound proteins [86, 87], increasing the reso-
lution of the library while reducing the sequencing cost. 
Combining the phenol–chloroform extraction step from 
FAIRE-seq [96] with in situ Hi-C, OCEAN-C was devel-
oped to prioritise the chromatin interactions on open 
chromatin [88]. Similarly, integrating with an assay called 
column purified chromatin (CoP), which is enriched for 
accessible chromatin regions such as active promoters, 
enhancers and insulators, HiCoP was recently developed 
to identify chromatin contacts in regulatory regions [89]. 
Methyl-HiC has been developed to jointly profile the 
DNA methylation and 3D genome structure [90]. Recent 
studies have also revealed that DNA methylation is able 
to impact 3D genome structure via polycomb complexes, 
which play an important part in repressing key develop-
mental genes [27, 97–100].

The optimisations introduced by protocols such as 
Micro-C largely improve the cross-linked DNA capture 

Table 1 Different Hi‑C‑derived methods. Optimisations indicate their modification in their protocols compared to traditional Hi‑C

Hi‑C flavours Optimisations Advantages compared to traditional Hi‑C Reference

Traditional Hi‑C – – [2]

In situ Hi‑C Nuclear ligation; 4‑based cutter Allow higher resolution data generation [3]

DNase Hi‑C DNase I to digest cross‑linked DNA Improve capture efficiency, reducing digestion bias but 
have A compartment bias

[77]

Micro‑C Crosslinking with DSG and micrococcal nuclease to digest 
cross‑linked DNA

Improve capture efficiency, reducing digestion bias but 
have A compartment bias

[78]

BL‑Hi‑C HaeIII to digest cross‑linked DNA, followed by a two‑step 
ligation

Improve capture efficiency in regulatory regions, reducing 
random ligation events

[79]

DLO Hi‑C No labelling and pull‑down step Reduce experimental cost [80]

tag Hi‑C Tn5‑transposase tagmentation Focus on accessible chromatin, allow only hundreds of 
cells as input, reduce experimental cost

[81]

Capture HiC RNA baits to subset specific chromatin contacts Reduce sequencing cost, focus on a subset of interactions [82]

Capture‑C/NG 
Capture‑C/
Tiled‑C

Enrich the 3C library with biotinylated capture oligonu‑
cleotides

Focus on the subset of interactions while retaining maxi‑
mal library complexity

[83–85]

HiChIP/PLAC‑seq Chromatin Immunoprecipitation (ChIP) to subset bound 
chromatin contacts

Reduce sequencing cost, focus on a subset of interactions [86, 87]

OCEAN‑C Phenol–chloroform extraction step Focus on accessible chromatin [88]

HiCoP Column purified chromatin step Focus on accessible chromatin [89]

Methyl‑HiC Bisulfite conversion Allow jointly profiling of DNA methylation and 3D 
genome structure

[90]

Hi‑C 2.0 Efficient unligated ends removal Largely reduce the dangling end DNA products [91]

Hi‑C 3.0 Double cross‑linking with FA and DSG and double diges‑
tion with DpnII and DdeI

Improve the ability to identify A/B compartments and 
improve the enrichment of regulatory elements in loop 
detection

[92]
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specificity, allowing higher resolution data to be gener-
ated with less sequencing cost. Based on these optimi-
sations, Hi-C 2.0 and Hi-C 3.0 have been developed as 
the updated versions of Hi-C protocol in recent years 
[91, 92]. In Hi-C 3.0, the protocol uses a combination of 
two restriction enzymes, DdeI and DpnII, and MNase 
to generate short fragments, which can improve the 
identification of genome compartmentalisation. Addi-
tionally, Hi-C 3.0 also uses DSG as cross-linker in addi-
tion to formaldehyde to generate cross-linked DNA, 
improving the enrichment level of regulatory elements 
such as promoters and enhancers in the identified chro-
matin loops [92].

As the development of Hi-C approaches continue, it 
is essential that computational methods are standard-
ised in order to provide consistent results that are com-
parable across species or cell types. In the next section, 

we review the current data processing methods that are 
used in standard Hi-C sequencing approaches.

Prioritisation of chromatin interactions
Methodologies to extract meaningful, potentially func-
tional information from the massive number of interac-
tions identified through Hi-C data can be categorised 
into three groups: structural-based methods, detection 
of significant interactions and data integration (Fig.  2). 
The first approach is to define structures such as A/B 
compartments and TADs, based on the 2D interac-
tion patterns across the genome. The second approach 
is to investigate only a subset of Hi-C interactions that 
are identified from a statistical test based on a trained 
model. Finally, taking advantage of the publicly available 
databases or the generation of epigenomics data in par-
allel with Hi-C data, the third approach is to prioritise 

Fig. 2 Approaches to prioritise interactions from Hi‑C datasets. In this review, we categorised the approaches to identify potentially functional 
interactions into three ways, including significant interactions identification, structures summarisation and data integration. Referenced tools and 
sub‑categorical analyses are marked on the figure with boxes and stars, respectively
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interactions that are more likely to be biologically rel-
evant through the investigation of genomic and epig-
enomic information. These approaches are not mutually 
exclusive and in many cases can be combined to address 
specific questions in genome organisation and gene 
regulation.

Structural‑based identification methods
Methods that identify structural aspects of chroma-
tin interactions (i.e. A/B compartments and TADs) are 
employed as an avenue to reduce the dimensionality of 
the 3D interaction patterns across the genome by cluster-
ing or summarising regions with similar patterns across 
the genome. The A/B compartments are commonly pre-
dicted with normalised Hi-C matrices generated using 
vanilla coverage (VC) [2], Knight and Ruiz’s method (KR) 
[101] or iterative correction and eigenvector decom-
position (ICE) [102]. Normalised data are then used to 
calculate Pearson’s correlation and through principal 
component analysis (PCA), the eigenvectors of the first 
(or second) principal component (PC) are usually used 
to assign bins to A or B compartments. Current analysis 
toolkits, such as Juicer [103] and FAN-C [104], have opti-
mised correlation matrix functions to identify A/B com-
partments from Hi-C matrices without significant taxes 
on memory and computational resources.

As detailed above, TADs are defined as structures with 
interactions that occur within TADs rather than across 
TADs [30]. As such, they are often identified by finding 
domains where contacts are enriched within the same 
TAD as compared to neighbouring TADs [30, 105]. Cur-
rently, there are over 20 commonly used TADs callers 
that have been developed using various methodologies. 
For instance, arrowhead [3], armatus [106], directionality 
index [30], insulation score [107] and TopDom [108] use 
their own linear scoring system, clusterTAD [109] and 
ICFinder [110] are based on clustering, TADbit [111], 
TADtree [112] and HiCseg [113] use statistical models; 
and MrTADFinder [114] and 3DNetMod [115] rely on 
network-modelling approaches [37, 116]. Although com-
parisons reveal low reproducibility among tools, espe-
cially in the number and mean size of identified TADs, 
recent reviews [37, 116] have suggested a preference for 
TAD callers that allow for the detection of nested TADs 
or overlapped TADs, such as rGMAP [117], armatus, 
arrowhead and TADtree.

While theoretically similar to TAD calling, frequently 
interacting regions (FIREs) are also commonly used to 
describe structural interaction characteristics. Defined 
as genomic regions with significant interaction pro-
file, FIREs exhibit strong connectivity with multiple 
regions in the chromosome neighbourhood [73]. FIREs 
can be easily visualised on the Hi-C interaction map, 

with interacting signals appearing from both sides of 
the FIREs, forming a characteristic “V” shape (Fig.  1A). 
Unlike TADs and compartments, which exhibit a certain 
level of conservation across cell types (about 50 ~ 60 and 
40%, respectively) [3, 30, 73, 118], FIREs appear to be 
cell type- and tissue-specific and are often located near 
key cell phenotype-defining genes. However, similar to 
TADs, FIREs formation seems to be dependent on the 
Cohesin complex, as its depletion results in decreas-
ing interactions at FIREs [73]. They are also enriched for 
super-enhancers, suggesting FIREs play an important 
role in the dynamic gene regulation network [119, 120]. 
Similar to FIREs, “V” shape structural feature that is 
referred to as “line” structure was observed at the edge of 
the TADs during the exploration or loop extrusion model 
using simulated Hi-C data [14].

Methods for identification of significant chromatin 
interactions
In order to prioritise potentially meaningful chromatin 
interactions, statistical significance is assigned to Hi-C 
interactions by comparing them to a background model 
and assessing the probability of observing the experi-
mental set of counts if the background model were the 
underlying method of generating observed counts. The 
interaction frequency generally decays with increasing 
linear distance, and by applying this background model 
meaningful interactions can be identified through a 
higher than normal frequency. Here we summarise the 
current methodologies of significant interactions iden-
tification and categorise them into two groups; global 
background model methods, which define a background 
signal model by considering the read count of any pair 
of interactions, and local background model methods, 
which account for interactions in the neighbouring areas 
to identify peak interactions with statistical significance 
(Table 2).

Global background‑based methods
The initial study which assigns statistical significance to 
Hi-C interactions is done in the yeast genome. The chro-
matin interactions in the yeast genome was first sepa-
rated into intra-chromosomal interactions (within the 
same chromosome) and inter-chromosomal interactions 
(across two chromosomes), followed by a binomial distri-
bution to assign confidence estimates for inter-chromo-
somal interactions [121]. A binning method is then used 
to account for the characteristic pattern of intra-chromo-
somal interactions, with the observed interacting proba-
bility decaying as the genomic distance increases linearly. 
This is then used to compute interacting probabilities 
for each bin separately and assigning statistical signifi-
cance using the same binomial distribution as used for 
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inter-chromosomal interactions [121]. Based on the same 
binomial distribution concept, Fit-Hi-C uses spline fitting 
procedure instead of binning, reducing the bias of artifac-
tual stair-step pattern, allowing detection of statistically 
significant interactions in the mammalian genome [122]. 
Additionally, Fit-Hi-C also incorporates an extra refine-
ment step using a conservative model with stringent 
parameters to remove outlier interactions, which can be 
applied iteratively, to achieve a more accurate empirical 
null model. However, Fit-Hi-C was initially limited by 
only allowing bin sizes larger than 5 kb to compute signif-
icance due to the heavy memory usage when dealing with 
higher resolution data. However this has been improved 
with recent updates [123], and is now able to handle data 
with high resolution (bin sizes from 1 to 5 kb). Another 
important new feature is that it is now accepting multi-
ple input formats so that it is compatible with different 
Hi-C analysis pipelines. Another similar tool is included 
in the Homer toolkit [124], which accounts for biases 
such as sequencing depths, linear distance between 
regions, GC bias and chromatin compaction to establish 
a background model to estimate the expected interaction 
count between any two regions, followed by the use of a 
cumulative binomial distribution to assign significance to 
interactions. GOTHiC [125] also uses relative coverage 
of two interacting regions to estimate both known and 
unknown biases, followed by a cumulative binomial dis-
tribution to build the background model to identify sig-
nificant interactions.

The Negative Binomial distribution is commonly uti-
lised in the analysis of count-based data, including pop-
ular RNA-seq analysis tools such as edgeR [136] and 
DEseq2 [137], and has been implemented in a number 
of Hi-C programs such as HIPPIE [72, 127]. This method 
uses a negative binomial model to estimate the statis-
tical significance of the interactions in one fragment 
region (< 2  Mb) while accounting for restriction frag-
ment length bias and interacting probability distance 
bias simultaneously. However, negative binomial models 
can be confounded by many bins with zero counts [128] 
and a number of programs have developed approaches 
to account for “zero-inflated” observations. HiC-DC, 
for example, uses a hurdle negative binomial regression 
model to identify significant interactions [128], model-
ling the probability of non-zero counts and the rate of 
observed counts as separate components of the model.

While physical interactions between loci found in 
close linear proximity are likely to be more prevalent 
in Hi-C datasets, a known bias in Hi-C libraries is the 
correlation between two nearby restriction fragments 
brought about by ligation events. Ligation events can 
be the result of bias or random collision events between 
restriction fragments during library preparation, so 
with high coverage sequencing, false signals can impact 
the identification of significant interactions [72]. To 
tackle this problem, HMRFBayesHiC uses a negative 
binomial distribution to model observed interactions 
[72], followed by a hidden Markov random field model 
to account for the correlation between restriction 

Table 2 Methods for identification of statistically significant interactions for Hi‑C data

Method name Type Base model Specific features Reference

Duan et al. 2010 Global background Binomial Specifically designed for yeast genome [121]

Fit‑Hi‑C/FitHiC2 Global background Binomial Spline fitting procedure, compatible with different formats [122, 123]

HOMER Global background Binomial Highly compatible with the HOMER Hi‑C analysis pipeline [124]

GOTHiC Global background Binomial Use relative coverage to estimate biases [125]

FitHiChIP Global background Binomial Specifically designed for HiChIP data [126]

HIPPIE Global background Negative binomial Account for fragment length and distance biases [72, 127]

HiC‑DC Global background Negative binomial Use zero‑inflated model [128]

HMRFBayesHiC Global background Negative binomial Use hidden Markov random field model [129]

FastHiC Global background Negative binomial An updated version of HMRFBayesHi, with improved computing speed [130]

MaxHiC Global background Negative binomial Use ADAM algorithm, identify interactions with enrichment for regulatory 
elements

[131]

CHiCAGO Global background Negative binomial Specifically designed for CHi‑C data [132]

ChiCMaxima Global background Local maxima Specifically designed for CHi‑C data, more stringent and robust when com‑
paring biological replicates

[133]

HICCUP Local background Local enrichment Robust for finding chromatin loops [3]

cLoops Local background DBSCAN Loop detection with less computational resource [134]

Automated 
identification 
of stripes

Local background Local enrichment Specifically designed to identify architectural stripes [135]
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fragments, and to model interaction probabilities [129]. 
This implementation required significant resources 
to run, leading to the development of FastHiC [130], 
which enables higher accuracy of interaction identifi-
cation and faster performance. Recently, another tool 
called MaxHiC also based on negative binomial distri-
bution was developed [131]. Compared to other tools, 
all parameters of the background model in MaxHiC 
are established by using the ADAM algorithm [138] to 
maximise the logarithm of likelihood of the observed 
Hi-C interactions. Significant interactions identified 
by MaxHiC were shown to outperform tools such as 
Fit-Hi-C/FitHiC2 and GOTHiC in identifying signifi-
cant interactions enriched between known regulatory 
regions [131].

Compared to traditional Hi-C protocols, Capture 
Hi-C (CHi-C) requires different analytic methods due 
to the extra bias driven by the enrichment step in the 
protocol. Capture libraries can be regarded as a sub-
set of the original Hi-C library, meaning the interaction 
matrix of CHi-C is asymmetric, and interestingly not 
accounted for in traditional normalisation methods [82, 
132]. Because of this, many analysis approaches are spe-
cifically designed for CHi-C data analysis. CHiCAGO 
(Capture Hi-C Analysis of Genomic Organisation) was 
developed to account for biases from the CHi-C proto-
col and identify significant interactions [132], using a 
negative binomial distribution to model the background 
local profile and an additional Poisson random variable 
to model technical artefacts [132]. CHiCAGO uses the 
implicit normalisation method ICE [102] and multiple 
testing stages based on p-value weighting [139] to care-
fully identify significant interactions from each CHi-C 
dataset [132]. Another CHi-C-specific tool called ChiC-
Maxima was developed to identify significant interac-
tions by defining them as local maxima after using loess 
smoothing on bait-specific interactions [133]. Compared 
to CHiCAGO, ChiCMaxima’s approach is more stringent 
and exhibits a more robust performance when compar-
ing biological replicates [133]. As well as being appli-
cable to conventional HiC data, MaxHiC is also able to 
identify significant interactions in CHi-C data [131] and 
offers robust performance to identify regulatory areas 
compared to CHi-C-specific tools including CHiCAGO 
[131].

Like the other capture approaches, HiChIP cannot use 
traditional (Hi-C-specific) interaction callers (e.g. Fit-
Hi-C or GOTHiC) due to the inherent biases associated 
with an enrichment with specific immunoprecipitation 
targets [86]. Hichipper was developed to firstly identify 
ChIP peaks while accounting for the read density bias in 
restriction fragments, enabling a more accurate identifi-
cation of interactions from HiChIP dataset [140]. While 

hichipper does not implement any function to iden-
tify significant interactions, FitHiChIP was developed 
to account for non-uniform coverage bias and distance 
bias in restriction fragments using a regression model, 
together with 1D peak information in a spline fitting pro-
cedure to accurately identify significant interactions from 
HiChIP data [126].

Local background‑based methods
Chromatin looping structures can be regarded as the 
basic unit of 3D genomic architecture and play an impor-
tant role in the regulatory process, by bringing distal 
promoter and enhancer elements together or excluding 
enhancers from the looping domain [15–17]. Chromatin 
loops from Hi-C data were first defined by searching for 
the strongest “pixel” on a normalised Hi-C contact map 
(Fig.  1A). Different from the global background models 
used by methods like Fit-Hi-C and MaxHiC, using a local 
background model to compare all pixels in a neighbour-
ing area is able to detect pixels with the strongest signals 
as the anchor points of chromatin loops [3]. A searching 
algorithm named Hi-C Computational Unbiased Peak 
Search (HICCUPS) was therefore developed to rigor-
ously search for these pixels based on the local enrich-
ment in the pixel neighbourhood, followed by hypothesis 
testing with Poisson statistics, enabling the identification 
of chromatin loops from Hi-C data [3]. Somewhat simi-
lar to TADs, published information on chromatin loops 
demonstrates structural conservation between a number 
of human cell lines (~ 55–75% similarity), and between 
human and mouse (about 50% similarity), suggesting 
conserved loops may serve as a basic functional unit for 
the genome [3]. However, loop detection using HIC-
CUPS requires high-resolution data with extremely high 
sequencing depth. For example, almost 5 billion unique 
interactions were required by HICCUPS to identify 
10,000 unique loops in the GM12878 cell line [3]. This 
limitation can potentially be addressed by the current 
development of deep learning approaches, such as Deep-
HiC [141] using generative adversarial networks, as well 
as HiCPlus [142] and HiCNN [143] which use deep con-
volutional neural networks. Such methods can be used to 
increase the resolution of Hi-C data to achieve necessary 
resolution so that chromatin loops can be identified, or to 
improve loop detection accuracy [141, 142].

Hardware requirements to identify loops in high-res-
olution data is also extremely restrictive with HICCUPS 
requiring specific architectures (i.e. NVIDIA GPUs) 
to identify looping patterns. However this has been 
addressed recently with the HICCUPS algorithm being 
reimplemented in the cooltools package (https:// github. 
com/ mirny lab/ coolt ools), allowing HICCUPS to be run 
on a regular server or compute cluster [95]. Alternatively, 

https://github.com/mirnylab/cooltools
https://github.com/mirnylab/cooltools
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an approach called cLoops was implemented which iden-
tifies peak interactions from chromatin contact map 
[134]. cLoops initiates loop detection by finding can-
didate loops via an unsupervised clustering algorithm, 
Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) [144], which enables computing sta-
tistical significance of interactions with less amount of 
input and reduced computational resources. Candidate 
loops are then compared with a permuted background 
model, based on the interaction decay over linear dis-
tance, to estimate statistical significance.

Further investigation in high-resolution Hi-C data 
(< = 10  kb), another local background model method 
was developed to identify architectural stripe structures 
rather than loops [135]. The stripe structure is similar to 
FIRE, where a genomic region contacts other regions of 
the entire domain with high interacting frequency [135]. 
Its identification algorithm Automated identification of 
stripes computes the pixel-specific enrichment relative 
to its local neighbourhood, then performs Poisson statis-
tics to test if the signal is statistically significant [135]. It 
was further shown that stripe anchors highly correspond 
to loop anchors, and stripes appear to be relevant with 
enhancer activity [135, 145].

Potentially functional interaction identification via data 
integration
While variation in gene-coding regions can lead to sig-
nificant alterations in one gene or abnormalities across a 
region in the genome, causing mendelian diseases such as 
chronic granulomatous disease [146], cystic fibrosis [147] 
and Fanconi’s anaemia [148], the fundamental motivation 
for identifying interacting regions across a genome is to 
establish how non-coding regions of the genome impact 
gene expression [1, 149, 150]. However potentially func-
tionally relevant interactions, whether this be chroma-
tin interactions between gene promoters and enhancers 
or transcription factor binding mechanisms, are often 
established in a cell type-specific manner [71, 82]. By 
integrating Hi-C interactions with local or publicly avail-
able genomic, transcriptomic and epigenomic datasets, 
such as regulatory elements, gene expression, genetic 
variation and quantitative trait loci (QTL) information, 
potentially functional interactions can be prioritised.

Potentially functional Hi-C interactions can be identi-
fied by integration with transcriptomics and enhancer 
data. Promoter–enhancer interactions (PEI), promoter–
promoter interactions (PPI) or enhancer–enhancer inter-
actions (EEI), where distal promoters or enhancers are 
brought into close proximity by chromatin contacts to 
form complex contact, are three widely accepted poten-
tially functional Hi-C interaction types to be studied 
[51, 69, 151–157]. These interaction categories are often 

identified by finding overlaps of promoter or enhancer 
signals separately at each anchor of a Hi-C interaction 
[51, 155, 158]. However, when identifying PEI or PPI 
from Hi-C data for a specific cell type, the gene expres-
sion profile of such cell type should be considered to 
determine which promoters are active given that pro-
moter interactions are shown highly cell-type specific 
[51].

Similar to promoters of expressed genes, active 
enhancers of a specific cell type are necessary to identify 
potentially functional PEI or EEI for a specific cell type. 
Expressed enhancers (eRNAs) or experimentally veri-
fied enhancers of different human cell types and tissues 
are available in publicly available projects and databases 
such as FANTOM5 project [159], the NIH Roadmap Epi-
genomics project [160], the EU Blueprint project [161], 
ENCODE [162, 163] and ENdb [164]. Additionally, pre-
vious studies also used cell type-specific histone mark-
ers ChIP-seq data, such as H3K27ac and H3K4me1, or 
integrated chromHMM chromatin state information pre-
dicted from a variety of epigenomic sequencing informa-
tion [165, 166] to indicate the activity of an enhancer in 
a specific cell type [51, 155, 158, 167, 168]. In addition to 
using Hi-C data, there are numerous methods that have 
been developed to predict potentially functional interac-
tions based on histone marker signals [169], gene expres-
sion and methylation data [170], ATAC-seq data [171], 
DNase-seq data [172] or even DNA sequence alone [173]. 
These types of methods have been comprehensively 
reviewed in a recent review study [174].

Besides promoters and enhancers, Super-enhancers 
(SEs) are another major regulatory element that is crucial 
to the identification of potentially functional interactions. 
SEs are defined as a clustered region of enhancers exhib-
iting significantly higher levels of active enhancer marks 
and an enrichment with transcription factor binding 
sites (TFBS) [175]. These regions act as “regulatory hubs”, 
which are higher-order complexes consisting of inter-
actions between multiple enhancers and promoters at 
individual alleles [152, 176, 177]. The formation of these 
regulatory hubs are proposed to be the consequence of 
the high level of TF and co-factor localisation to the SE 
interacting to form a biomolecular condensate by a phase 
separation model [178–183]. Identified Hi-C interactions 
with linkages to SE have been shown to be potentially 
functional by mediating multiple gene expression regu-
lations three-dimensionally, or being essential for cell 
identity and development [50, 184–189]. SE can be iden-
tified from H3K27ac ChIP-seq using the ROSE algorithm 
[186], and currently SE information can be easily acces-
sible from databases such as AnimalTFDB [190], Plant-
TFDB [191], GTRD [192], SEdb [193], dbSUPER [194] 
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and SEA [195, 196], allowing cell-type regulatory hubs to 
identified and linked to phenotypic traits and/or disease.

In genome-wide association studies (GWAS), almost 
90% of the identified genetic single-nucleotide poly-
morphisms (SNPs) associated with phenotypic traits are 
located in non-coding regions such as gene desert, which 
are areas lacking protein-coding genes, hence making 
the interpretation of the functions of such variants much 
more challenging than the ones located within or nearby 
protein-coding genes [197–199]. Hi-C data have been 
proved to be useful in many studies for addressing this 
issue by forming linkages between diseases-associated 
variants and genes using long-range chromatin interac-
tions. For examples, interactions between gene promot-
ers and variation-located long coding RNAs (lncRNA), 
where GWAS SNPs can impact the expression of the tar-
get genes by affecting the binding of TF binding to the 
lncRNA [200]; direct interactions between SNPs and 
multiple genes, exhibiting co-regulation function of the 
SNPs [201]; interaction networks based on a SNP, bring-
ing gene promoter, TF binding site and active enhancer 
region together by chromatin interactions to affect gene 
expression [202]. Variants may also impact gene-coding 
regions over large distances meaning that target genes 
of the variations are not necessarily their closest proxi-
mal gene [71, 203]. Currently, databases such as GWAS 
catalog [204], ImmunoBase [205], GWAS Central [206], 
GWAS ALTAS [207] and GWASdb [208] contain infor-
mation of the level of genetic association of each variant 
to specific diseases, which are invaluable data to be inte-
grated in a high-dimensional interaction dataset.

Tissue-specific quantitative trait loci (QTLs) are 
identified as the possession of variants that can signifi-
cantly impact the level of quantitative trait [209], such 
as expression QTLs (eQTLs) that affect the expression 
level of the target genes [210], histone QTLs (hQTLs) 
that affect histone modifications [211, 212], methyla-
tion QTLs (meQTLs) that impact DNA methylations 
[213, 214] and ATAC-QTL that affect the accessibility 
of the corresponding areas [215]. In recent QTL stud-
ies, QTLs are found to affect their target regions by 
the long-range chromatin interactions between them 
observed from Hi-C data. For example, Greenwald et al. 
has recently used pancreatic islet-specific data to inves-
tigate the risk gene loci of type 2 diabetes (T2D) [216]. 
In their work they combined gene and enhancers inter-
action maps generated from Hi-C data, together with 
variant and gene expression linkage data, provided by 
tissue-specific eQTL analysis, to establish an enhancer 
network for T2D risk loci. In support of genetic variation 
at enhancers influencing transcriptional regulation, Yu 
et al. used HiC data to demonstrate that eQTLs tend to 
be in close spatial proximity with their target genes [217]. 

Additionally, a recent multi-tissues integration analysis 
between eQTLs and Hi-C interactions revealed the close 
proximity between eQTLs and their target genes, indi-
cating that eQTLs regulate the expression of their target 
genes through chromatin contacts [217]. Therefore, with 
publicly available QTL databases such as the GTEx pro-
ject [210], seeQTL [218], Haploreg [219], Blood eQTL 
browser [220], Pancan-meQTL [221] and QTLbase [222], 
the linkages between such QTLs and their target genes or 
regions can be used to infer potentially functional Hi-C 
interactions.

Future prospects
The investigation of 3D chromosome structure can pro-
vide novel insights into the complex regulatory network 
in the genome. The development of Hi-C and its derived 
protocols have facilitated the studies of the 3D genome 
structure, generating numerous high-quality datasets. 
However, due to the complexity of the Hi-C library 
preparation and analysis, the biologically meaningful, 
small-scale interactions may still lack sufficient signals, 
hindering the detection and interpretation of 3D interac-
tions. The approaches that we presented in this review all 
aim to reduce the complexity of 3D interaction data, nar-
rowing down information based on structure, statistical 
inference and additional lines of experimental evidence 
(i.e. cell type-specific epigenomic data).

Incremental development of Hi-C calling applications 
(chromatin loops, TADs, etc.) has continued with a focus 
on correcting biases introduced by library preparation 
and sequencing. As more and more sequencing data are 
deposited on open-access data repositories such as NCBI 
Short Read Archive (SRA) [223] and European Nucleo-
tide Archive (ENA) [224], it has allowed the development 
of novel Machine Learning models trained on known 
interactions to identify novel patterns when applying 
these models to new datasets. Incorporation of publicly 
available cell type/tissue-specific epigenomics data into 
these machine learning models of chromatin interactions 
will allow for more accurate predictions on the molecular 
mechanisms by which diseases-associated genetic acts. 
In the future, such models of 3D interactions can poten-
tially be used as markers for disease screening and used 
for personalised medicine development.

Although the development in protocol efficiency, par-
allel algorithmic improvements are likely to improve 
current approaches for identifying 3D interactions. 
Additional imaging technologies such as real-time signal 
fluorescence in situ hybridisation and advanced imaging 
approaches such as STORM imaging have been used to 
visualise the nuclear organisation in living cells and lead-
ing to the identification of clusters of clutch domains that 
are thought to correspond to TAD [7, 225]. Lastly the 



Page 12 of 17Liu et al. Epigenetics & Chromatin           (2021) 14:41 

ability to engineer specific mutations in DNA through 
genome editing technology such as the CRISPR–Cas9 
system [226, 227], means that future experiments using 
Hi-C and 3D imaging in-parallel with genetically modifi-
cation of genomes will vastly improve our understanding 
of how variation may impact genomic structure, and the 
regulations of gene expression.

Conclusion
In this review, we first introduced the three-dimensional 
chromosome architecture in different scales, followed 
by presenting the chromosome conformation capture 
assays, with a focus on Hi-C and its variations, which 
are the state-of-the-art methods for investigating the 3D 
genome structure. Lastly, we comprehensively reviewed 
methodologies that are developed to reduce the com-
plexity of 3D physical interactions identified from Hi-C 
datasets to detect potentially functional interactions. We 
also categorised the methods into three types, including 
structural-based detection methods, significant chroma-
tin interactions identification methods and data integra-
tion methods. Taken together, by utilising these methods 
carefully, we are able to detect physical interactions with 
biological meaning and impact from complicated Hi-C 
dataset, which may serve a purpose in diagnosis and pre-
cision medicine.
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