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Abstract 

Background: Genome-wide association studies (GWAS) have enabled the discovery of single nucleotide polymor-
phisms (SNPs) that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). 
However, many of the identified variants lie in non-coding regions, limiting the identification of mechanisms that 
contribute to autoimmune disease progression. To address this problem, we developed a variant filtering workflow 
called 3DFAACTS-SNP to link genetic variants to target genes in a cell-specific manner. Here, we use 3DFAACTS-SNP to 
identify candidate SNPs and target genes associated with the loss of immune tolerance in regulatory T cells (Treg) in 
T1D.

Results: Using 3DFAACTS-SNP, we identified from a list of 1228 previously fine-mapped variants, 36 SNPs with 
plausible Treg-specific mechanisms of action. The integration of cell type-specific chromosome conformation capture 
data in 3DFAACTS-SNP identified 266 regulatory regions and 47 candidate target genes that interact with these 
variant-containing regions in Treg cells. We further demonstrated the utility of the workflow by applying it to three 
other SNP autoimmune datasets, identifying 16 Treg-centric candidate variants and 60 interacting genes. Finally, we 
demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of all known common (> 10% allele fre-
quency) variants from the Genome Aggregation Database (gnomAD). We identified 9376 candidate variants and 4968 
candidate target genes, generating a list of potential sites for future T1D or other autoimmune disease research.

Conclusions: We demonstrate that it is possible to further prioritise variants that contribute to T1D based on regula-
tory function, and illustrate the power of using cell type-specific multi-omics datasets to determine disease mecha-
nisms. Our workflow can be customised to any cell type for which the individual datasets for functional annotation 
have been generated, giving broad applicability and utility.
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Background
Autoimmune diseases are chronic inflammatory disor-
ders caused by a breakdown of immunological tolerance 
to self-antigens, which results in an imbalance between 
multiple immune cells, including conventional T cells 
(Tconvs) and regulatory T cells (Tregs) [1]. The imbalance 
of immune cell function can lead to the destruction of 
host tissues, such as is observed in multiple autoimmune 
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diseases, including rheumatoid arthritis (RA), multiple 
sclerosis (MS) and inflammatory bowel disease (IBD). In 
the case of type 1 diabetes (T1D), a reduction of Treg cell 
function contributes to unrestrained immune destruction 
of the insulin-generating pancreatic beta cells, resulting 
in the loss of control of blood sugar levels [2].

Regulatory T cell function is mediated by expression 
of the Foxhead Box Protein 3 (FOXP3) transcription fac-
tor (TF) as evidenced by severe autoimmune diseases 
observed in FOXP3-deficient scurfy mice [3] and IPEX in 
humans [4–6]. RNA sequencing and chromatin immuno-
precipitation (ChIP) studies have uncovered an extensive 
FOXP3-dependent molecular program involved in Treg 
cell development and stability [7, 8]. Functional fitness of 
Treg is dependent on stable robust expression of FOXP3, 
such that reduced FOXP3 expression is linked to reduced 
Treg function. For example, in a small T1D cohort study, 
we have shown that there is a decrease in FOXP3 expres-
sion in the Treg of children over the first 9 months post 
diagnosis [9]. However, since FOXP3 itself is not mutated 
in autoimmune diseases other than IPEX, the loss of 
FOXP3 levels and functional fitness is likely caused by 
perturbation of the Treg gene regulatory network. Hence, 
by decoding the regulatory network of FOXP3, and 
mapping the genetic risk to the key functional genes it 
impacts, we will gain a better understanding of how auto-
immune diseases like T1D could be countered.

T1D has a strong pattern of inheritance [10]. Genome-
Wide Association Studies (GWAS) have identified over 
50 loci that are strongly associated with T1D, based on 
the genotyping of a total of 9934 cases and 16,956 con-
trols from multiple cohorts and resources [11]. In addi-
tion, fine-mapping of immune-disease associated loci 
represented on the Immunochip Array [12] followed by 
a Bayesian approach identified 44 significant T1D-asso-
ciated Loci and over 1,000 credible SNPs [13]. Although 
GWAS and fine-mapping studies have revealed signifi-
cant associations between genetic variants and T1D, the 
vast majority of the sampled single nucleotide polymor-
phisms (SNPs) are located in non-coding regions that 
do not alter the amino acid sequence in a protein, mak-
ing it difficult to assign direct biological functions to 
variants [14–16]. Non-coding variants can be linked to 
direct changes in gene expression by identifying expres-
sion quantitative trait loci (eQTL) that aim to associ-
ate allelic changes to cis (within 1Mbp of the associated 
gene) and trans (> 1Mbp) changes in gene expression 
[17]. This additional direct gene expression association 
however still fails to identify direct mechanisms by which 
a specific genetic variant can change gene expression. 
In addition, usage of eQTLs to establish direct changes 
from GWAS variants is somewhat limited to local, or 
cis-eQTLs [18], whereas mounting evidence shows that 

long-range regulatory connections, driven by three-
dimensional chromatin interactions [19, 20], can mediate 
these changes in expression.

With the increasing affordability and availability of 
high-throughput sequencing techniques and various 
epigenomics sequencing data protocols, the impact of 
genome organisation and accessibility can now be added 
to the functional annotation of genetic risk [1]. Chroma-
tin immunoprecipitation sequencing (ChIP-seq) allows 
us to identify the binding sites of a transcription factor; 
assay for transposase-accessible chromatin sequencing 
(ATAC-seq) data offers the ability to identify accessible 
regions of the genome; and high resolution chromo-
some conformation capture sequencing (Hi-C) data 
can facilitate the investigation of the three-dimensional 
structure of the genome. Since it is believed that the 
mechanisms by which non-coding SNPs contribute to 
diseases are mostly via changes to the function of regula-
tory elements [16], we believe that combining multiple 
genomics and epigenetics sequencing data can further 
reveal the relationship between GWAS SNPs and disease 
pathways.

While alterations in either the effector or regulatory 
arms of the immune system can result in loss of toler-
ance and autoimmune disease, we have used a Treg-
centric view of loss of tolerance. This is based on the 
observation that defects in Treg function have been 
reported in autoimmune diseases including T1D and 
MS [21, 22] and that experimental deletion of FOXP3 
or reduced Treg function results in autoimmune dis-
ease in many model systems [23, 24]. Our hypothesis 
is that the genetic variation that specifically alters Treg 
function will reside in open chromatin in Treg cells 
that is bound by FOXP3 and the genes controlled by 
these regulatory regions can be identified by chromo-
some conformation capture approaches. Therefore, in 
this paper, we describe a filtering workflow using mul-
tiple sequencing datasets from human Tregs, aiming 
to identify plausible immunomodulatory mechanisms 
and potentially find previously unknown connections 
between causative variant SNPs significantly associated 
with T1D and the genes they impact. Only by doing 
this will a new wave of personalised medicines to pre-
vent T1D be discovered.

Results
Post‑GWAS filtering using Treg‑specific epigenomic 
datasets prioritises functionally relevant genetic variants 
contributing to T1D
As T1D is partly a consequence of Treg dysfunction, 
we infer that variants contained within active regula-
tory regions of Treg cells are likely to contribute to dis-
ease progression by impacting Treg function. A view 
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supported by the finding that T1D-associated SNPs are 
enriched at Treg-specific regulatory regions [25]. There-
fore, starting with published T1D GWAS variant infor-
mation, we designed a filtering workflow (Fig.  1) using 
multiple human Treg-specific epigenomic data to iden-
tify perturbations within defined “regulatory T cell active 
regions”.

In order to obtain highly accessible chromatin regions 
in Treg, we performed transposase-accessible chromatin 
using sequencing (ATAC-seq) on resting and stimulated 
Treg cells from three donors and sequenced to an aver-
age of 37.1 million read pairs (± 4 million) per sample, 
with TSS enrichment score from 8.13 to 25.7 (Additional 
file 1: Fig. S1 and Table S1). From the ATAC-seq data, we 
identified ~ 577,866 ATAC-seq peaks on average, with 
over 100,000 and 200,000 peaks shared by the replicates 
in resting and stimulated Tregs, respectively (Additional 
file 1: Fig. S2). These ATAC-seq peaks were then merged 
into 683,954 non-redundant peaks and used to screen for 
variants located in accessible regions in regulatory T cells 
as the first filtering step of the 3DFAACTS-SNP pipeline 
(Fig. 1).

Numerous studies have shown that three-dimensional 
(3D) interactions play important roles in gene regula-
tion, mediated by DNA looping bringing enhancers and 
promoters together at transcriptional hubs [26–28]. As a 
result, distant loci which physically interact with disease-
associated regulatory regions can be potentially impacted 
by these regions. To identify 3D interaction in Treg cells, 
we generated and sequenced an in  situ Hi-C library of 
Tregs to 1.3 billion read pairs and identified 345,259 sta-
tistically significant Hi-C interactions at 5-kb bin reso-
lution after a series of stringent filtering processes (see 
“Methods”) (Additional file  1: Table  S2). These Hi-C 
interactions were then used to connect ATAC-seq peaks 
containing disease-associated variants to other regions in 
Tregs.

To assign potential function to these variant associated 
ATAC-seq peaks and Hi-C interacting regions, we next 
determined the overlap of these regions using enhancer 
and promoter annotations. This included 113,369 
enhancers (mean size of 698 bp) identified by the Func-
tional Annotation of the Mammalian Genome (FAN-
TOM5) project [29] and promoter regions (n = 73,171) 
associated with GRCh38/hg38 UCSC known transcripts. 
Promoters were defined by extending the sequence 2 kb 
upstream of transcription start sites (TSS). Addition-
ally, we extended the list of regulatory regions using the 
15-state chromHMM model for CD4 + CD25 + CD127− 
primary Treg cells from the Roadmap Epigenomics Pro-
ject [30]. We defined chromHMM states EnhG, Enh and 
EnhBiv as enhancers and TssA, TssAFlnk, TssBiv and Biv-
Flnk as promoters. FANTOM5 enhancers and defined 
promoters and chromHMM enhancers/promoters states 
were then merged, respectively, to represent all possi-
ble genetic regulatory elements, covering 7.49% of the 
genome (Additional file 2).

The transcription factor FOXP3 is critical for Treg 
function and orchestrating immunological tolerance, and 
stable high FOXP3 expression levels are observed specifi-
cally in Tregs [3, 31]. Therefore, by intersecting filtered 
SNPs with significant human FOXP3-binding signals, we 
can largely constrain SNPs within regulatory regions to 
FOXP3 controlled Treg-specific gene networks. In the 
pipeline, we used 8,304 FOXP3 ChIP-chip peaks (mean 
size = 1317  bp) from our previous study [31] to specify 
FOXP3 binding in human Tregs. Of interest, by search-
ing the Gene and Autoimmune Disease Association 
Database (GAAD) [32], we obtained 245 annotated genes 
that are associated with T1D, and found a significant 
enrichment of FOXP3 binding sites in T1D-associated 
genes (Fisher exact test: P-value = 4.519e-09), suggesting 
a strong association between T1D risk and FOXP3 con-
trolled Treg function. Taken together, FOXP3 binding, 

Fig. 1 Diagram of the individual components of the Treg-specific 3DFAACTS-SNP filtering workflow for identifying variants that are potentially 
causative to type 1 diabetes (T1D). GWAS or fine-mapped variants (on the left) are intersected with different filtering elements, including Treg 
ATAC-seq peaks, interactions from Treg Hi-C, promoters or enhancers and previously identified FOXP3 binding regions in Treg cells [28], resulting in 
filtered variants we termed 3DFAACTS SNPs
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physical interaction, regulatory element and open chro-
matin regions offer a large subset of regions to use for 
GWAS variant prioritisation and functional annotation 
experiments.

Linking fine‑mapped T1D‑associated variants to their 
targets via chromatin interactions
Genetic studies have identified over 50 candidate gene 
regions that contain potentially causative SNPs that 
impact T1D [11]. Recently, 1228 putative causal variants 
associated with T1D (99% credible set) were identified 
from a study by using Immunochip and a Bayesian fine-
mapping method [13]. We used our workflow to further 
prioritise variants from this fine-mapped set to investi-
gate potentially causative SNPs that contribute to T1D 
via affecting promoter/enhancer interaction in human 
Treg cells.

From the 1228 fine-mapped T1D-associated SNPs, we 
identified 36 variants that meet our filtering criteria: a var-
iant must be in open chromatin region, where the chosen 
Hi-C interactions are contacting, overlapping with either 
a promoter or an enhancer region and bound by FOXP3 
binding sties, in this study we will refer to them as T1D 
3DFAACTS SNPs. To demonstrate the biological rele-
vance of the process and the identified T1D 3DFAACTS 
SNPs, we performed 100 permutations with the workflow 
to confirm that the identification of 36 T1D-specific SNPs 
was significantly higher than by random chance (Fisher’s 
exact test, average P-value 7.22e-08) (Additional file  1: 
Fig. S3). These variants are located at 14 different chromo-
somal loci and distally interact with a further 266 regions 
three-dimensionally in Tregs (Table 1 and Additional file 3: 
Table S3). Most variants (71.4%, 25 out of 35 SNPs) were 
in enhancer regions rather than promoters while one vari-
ant, rs614120 is located in both the TssAFlnk chromHMM 
state and T cell-specific enhancers from FANTOM5. 
Given that a TssAFlnk state can either indicate a promoter 
or enhancer [33], combining with the identified FANTOM 
enhancer information, we believe that rs614120 is more 
likely to be located within an enhancer region.

Of the 14 loci identified, 8 contained more than two 
plausible variants across the loci. For example, vari-
ants located near the CD69 gene on chromosome 12 
had the highest number of filtered variants, with 9 vari-
ants located in regulatory regions around the gene. In 
order to annotate the filtered variants to nearby genes, 
we took two approaches: annotated genes that were 
located in proximity to the SNPs using linear, chromo-
somal distances, and genes identified by their interac-
tion with variant-containing regulatory regions via Treg 
Hi-C interactions (Table 1). Genes proximal to the iden-
tified 36 T1D variants include CTLA4, CCR5, IL7R, 
BACH2, IKZF1, IL2RA, CD69, RASGRP1, CCR3, CCR2, 

CLEC16A, HORMAD2 and PTPN2. These genes have 
previously been linked to T1D due to their proximity [13] 
and in addition are associated with other autoimmune 
disorders such as Multiple Sclerosis (MS), Rheumatoid 
Arthritis (RA), Crohn’s Disease (CD) and Inflammatory 
Bowel Disease (IBD) [13, 34–37]. Additionally, we anno-
tated the filtered variants using significant cis eQTL data 
across all tissues from the Genotype-Tissue Expression 
(GTEx) project [38]. We found that 16 filtered SNPs are 
annotated as the eQTL to their nearest loci while 15 fil-
tered SNPs are annotated as the eQTL to their 3D inter-
acting genes (Additional file  3: Table  S3). These data 
confirmed the ability of 3DFAACTS-SNP to identify 
potential disease-associated regulatory region–target 
gene networks in a cell type-specific manner.

In addition to the annotation of the 36 T1D SNPs 
to 14 genes in closest linear proximity, 3DFAACTS-
SNP identified 266 interacting regions and a further 47 
genes that interact with the variant-containing regula-
tory regions via Treg Hi-C (Table 1 and Additional file 3: 
Table  S3). We next used the 15 states regulatory model 
for CD4 + CD25 + CD127− Treg primary cells from the 
Roadmap Epigenomics Project [30] to annotate the inter-
acting regions. Of 266 regions, 145 of them overlap with 
the chromHMM states that associate with transcription 
and gene regulation, such as transcription (4_Tx) and weak 
transcription states (5_TxWk), which overlaps with 71 and 
124 interacting regions, respectively, and enhancers states 
(7_Enh), which overlaps with 88 interacting regions. We 
then used the Tregs chromHMM states, induced Treg 
super-enhancers from SEdb [39] and Tregs expressed genes 
from T1D patients [40] to annotate the 3D interacting 
genes. Of these 47 interacting genes, 38 overlapped with 
a Treg active chromHMM state, 14 overlapped with Treg 
super-enhancers and 25/47 are differentially expressed in 
Tregs in T1D patients [40] (Additional file 3: Table S4). Of 
these 25 genes 8 (CTLA4, ICOS, CCR5, BACH2, IL2RA, 
RASGRP1, CLEC16A and PTPN2) have been shown to 
be significantly associated with T1D previously [32] while 
our analysis has identified a further 17 new candidate genes 
that may be disrupted in a Treg in T1D. These data indicate 
that distal interacting regions contain regulatory regions 
and genes important for Treg function and are consistent 
with a model in which the variant-containing regulatory 
regions may contribute to T1D by disrupting the regulation 
of these distal interacting genes.

The topological neighbourhood surrounding filtered T1D 
variants
We next investigated the topological neighbourhood, i.e. 
the presence of topologically associated or frequently 
interacting domains, in which regulatory regions har-
bouring the filtered T1D variants reside. By establishing 
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Table 1 T1D 3DFAACTS SNPs identified using the 3DFAACTS-SNP filtering workflow from T1D fine-mapping SNPs

The nearest locus indicates the closest gene to the variants in linear distance, while 3D interacting genes are genes in contact with the variants via Treg Hi-C 
interactions. Overlapped regulatory elements of each 3DFAACTS SNPs are displayed, including chromatin states from a 15-state model and expressed enhancers from 
FANTOM5. Detailed SNP and interaction information is contained in Additional file 3: Table S3

*Genes in bold indicate novel 3D interacting genes of the identified SNPs

Chromosome Position SNP id Nearest locus 
(linear distance)

Located within regulatory regions Interacting genes (3D)

Treg ChromHMM FANTOM5 
expressed 
enhancers

chr2 204700689 rs12990970 CTLA4 TssAFlnk CD28,CTLA4,ICOS
204732714 rs231775 TssAFlnk RAPH1,CD28,ICOS
204738919 rs3087243 EnhG RAPH1

chr3 46327588 rs11718385 CCR3 Enh XCR1,CCR2,CCR5AS,CCR5
46391390 rs6441972 CCR2 TssAFlnk CCR3
46401032 rs3138042 Enh

46411661 rs2856758 CCR5 Enh SLC6A20,FYCO1,CXCR6,XCR1, 
LOC105377067,CCR3,CCR1,CCR2

46412259 rs1799988 TssAFlnk SLC6A20, FYCO1,CXCR6, XCR1, 
LOC105377067,CCR3,CCR1,CCR2

chr5 35852311 rs6890853 IL7R TssAFlnk SPEF2,LOC105374724,CAPSL
chr6 90948476 rs62408222 BACH2 Enh BACH2,LOC105377891

90983850 rs905671 Enh ✓ BACH2

90984035 rs943689 Enh ✓ BACH2

90995980 rs614120 TssAFlnk ✓ BACH2,LOC105377891
chr7 50462418 rs10216316 IKZF1 EnhG SPATA48

50462498 rs10215297 EnhG SPATA48
50465206 rs55981617 EnhG SPATA48,ZPBP,IKZF1

50465654 rs12670555 EnhG SPATA48,ZPBP,IKZF1,
chr10 6088743 rs12722508 IL2RA TssAFlnk RMB17

6094697 rs61839660 TssAFlnk IL2RA,RMB17,PFKFB3,LINC02649
6096667 rs12722496 ✓ IL2RA,RBM17,PFKFB3,LINC02649
6107534 rs11597367 Enh IL2RA,RBM17

chr12 9910720 rs3176793 CD69 TssA LOC374443,CLEC2D
9912182 rs2160086 TssA LOC374443,CLEC2D
9912730 rs3176789 TssA LOC374443,CLEC2D,LOC105369728
9916640 rs3136559 Enh LOC374443,CLEC2D,LOC105369728
9925758 rs1029992 Enh

9926064 rs1029991 Enh

9926397 rs1029990 Enh ✓
9926624 rs10844749 Enh

9926784 rs1540356 Enh

chr15 38903672 rs16967112 RASGRP1 Enh ✓ FAM98B,RASGRP1,LOC105370775, 
LOC105370780,LINC02694,FSIP1

38903884 rs56249992 Enh RASGRP1,FAM98B, LOC105370775, 
LOC105370780,LINC02694,FSIP1

chr16 11188949 rs71136618 CLEC16A Enh CLEC16A,LOC107984859, 
LOC105371082,RMI2,SOCS1

chr17 38755665 rs11656173 SMARCE1 Enh ✓ CCR7
chr18 12838767 rs17657058 PTPN2 Enh LINC01882,PTPN2,SEH1L
chr22 30581722 rs5753037 HORMAD2 Enh HORMAD2,LIF‑AS1,LIF
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putative boundaries of each 3D structural domain, we 
are then able to characterise the coordination of contacts 
within a locus and how they act to control gene expres-
sion. We called topologically associated domains (TADs) 
using Treg Hi-C interactions of 20-kb resolution (Addi-
tional file 3: Table S5) and integrated with publicly avail-
able super-enhancer, chromHMM data of T cell lineages 
and Treg expression data [41]. All data were overlapped 
across each locus and displayed in Figs. 2, 3, 5 and Addi-
tional file 1: Fig. S4–S12.

Chromatin interactions between genes and enhancer 
regions was detected within the variant-containing TADs, 
with these interactions both confirming previously iden-
tified SNP–target combinations and indicating potential 
new targets for investigation. For example, 3DFAACTS-
SNP identified rs12990970 (chr2:203,835,966) as a poten-
tial causative T1D SNP. In Treg cells, rs12990970 is found 
in a flanking active TSS (TssAFlnk) state and it is located 
within a Treg super-enhancer (Fig.  2). This variant is 
located in a non-coding region between gene CTLA4 
and CD28 and in past studies, and it has been associ-
ated with CTLA4 as it is an eQTL for CTLA4 expression 
in testis, although not in T lymphocytes or whole blood 
(Additional file 3: Table S3) [11, 13, 38, 42]. While Hi-C 
interaction signals indicate that the rs12990970-contain-
ing region interacts with the CTLA4 promoter in Treg, 
additional Hi-C interactions indicates that this region 
also form interactions with the promoter and enhancer 
regions connected to the costimulatory receptor CD28 
gene and the inducible costimulatory ICOS gene as well 
(Table  1 and Fig.  2). CD28 is a family member known 
to play a critical role in Treg homeostasis and function 
[43] and ICOS is believed to play an essential part in the 
suppressive function of Tregs [44], suggesting CD28 and 
ICOS are potential novel functional targets for this vari-
ant in Treg in T1D. Finally, additional contacts between 
the regulatory regions harbouring variants rs231775 and 
rs3087243, respectively, and the RAPH1 gene were iden-
tified. In mice the adaptor protein RAPH1 has recently 
been shown to play an important Treg-specific role in 
integrin activation, Treg-suppressive function and Treg 
homing to the gut in a mouse model of colitis [45] sug-
gesting changes in RAPH1 expression associated with 
regulatory regions harbouring variants rs231775 and 
rs3087243 may contribute to Treg defects in humans.

Another example of novel T1D-linked functional anno-
tation is on chromosome 3, where Hi-C interactions indi-
cated that the chemokine receptor genes CCR1, CCR2, 
CCR3, CCR5 and CCR9 (Fig.  3) are extensively linked 
in a set of continuous TADs, indicating that these genes 
may be coordinately regulated. This is supported by pre-
vious RNA Pol-II ChIA-PET work [46] that detected 

interactions between chemokine gene clusters dur-
ing immune responses including an increase in inter-
actions amongst the CCR1, CCR2, CCR3, CCR5 and 
CCR9 genes during TNF stimulation of primary human 
endothelial cells [46] (Additional file 1: Fig. S13). In sup-
port of this we found extensive Hi-C contacts between 
variant associated regulatory regions and CCR1, CCR2, 
CCR3 and CCR5 genes in Treg cells. Recently, CCR2, 
CCR3 and CCR5 have been shown to have additional 
chemotaxis-independent effects on Treg cells with indi-
vidual studies, reporting positive roles for individual 
chemokine receptors on CD25, STAT5, and FOXP3 
expression and Treg potency [47–49], highlighting the 
importance of multiple genes at this locus on Treg func-
tion. The chemokine receptor XCR1 gene also contacted 
by regulatory regions harbouring T1D associated vari-
ants rs11718385, rs2856758 and rs1799988 has also been 
implicated in Treg defects in human allergic asthma, 
with reduced XCR1 expression on CD4 + CD25highCD-
127low/ − regulatory T cell (Treg) shown to be associated 
with impaired regulatory function [50].

Filtered T1D variants are enriched at lineage‑specific T cell 
super‑enhancers
SEs usually consist of a cluster of closely spaced enhanc-
ers that are defined by their exceptionally high level of 
transcription co-factor binding and enhancer-associated 
histone modifications (i.e. H3K27ac) compared to all 
other active enhancers within a specific cell type [51]. 
SEs are also linked to the control of important processes 
such as cell lineage commitment, development and func-
tion [52]. Analysing T cell SE information annotated in 
the Super-Enhancer Database [39] (SEdb), 8 out of the 
14 variant-containing loci were found to contain filtered 
T1D variants located in SEs formed in various T cell line-
ages including Treg cells consistent with the enrichment 
of autoimmune-disease associated variants within T cell 
super enhancers reported previously [52] (Fig.  4A). The 
loci containing the CTLA4 and CLEC16A genes were 
the only loci that overlapped with Treg-specific SEs. The 
existence of a Treg SE is consistent with the different 
regulation of CTLA4 in Treg cells compared with other 
T cell lineages [53] and a recent report linking T1D risk 
variants to altered CLEC16A expression in Treg [40]. Five 
other SNPs are located within SEs in multiple T cell types 
including induced Treg (iTreg) suggesting the gene con-
trolled by these SE play a broad role in T cell function. 
While no Treg SEs are detectable at the CD69 locus the 
T1D associated variants in this region overlapped with 
SEs formed in other T subsets. No T cell-associated SEs 
are found in the loci containing the CCR1/2/3/5, PTPN2, 
RASGRP1 and HORMAD2 genes (Fig. 4A).
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Fig. 2 Visualisation of the CTLA4 region of filtered T1D SNPs on chr2: 203335966–204335966. Tracks displayed below the chromosome 2 ideogram 
display workflow datasets (3DFACCTS-SNP filtered SNPs, FOXP3-binding sites, Treg ATAC-seq peaks, statistically significant Hi-C interactions in 
Tregs (5 kb resolution), promoter and enhancer annotation) along with cell type-specific data including UCSC Gene Transcript information, T cell 
subsets (Thelper1 and Treg) expression data, super-enhancer data, 15-state ChromHMM track of T cell lineages. A heatmap showing the Tregs Hi-C 
interaction matrix (20 kb resolution) is located below the tracks. The plotted region of the tracks (chr22: 203335966–204335966) is indicated by the 
green area in the heatmap. The red triangles indicate topologically associated domains (TADs) called from the Hi-C interaction data
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Fig. 3 Visualisation of the CCR3/2/5 region of filtered T1D SNPs on chr3: 45859541–46859541. Tracks displayed below the chromosome 3 ideogram 
display workflow datasets (3DFACCTS-SNP filtered SNPs, FOXP3-binding sites, Treg ATAC-seq peaks, statistically significant Hi-C interactions of 
Tregs (5 kb resolution), promoter and enhancer) annotation along with cell type-specific data including UCSC Gene Transcript information, T cell 
subsets (Thelper1 and Treg) expression data, super-enhancer data, 15-state ChromHMM track of T cell lineages. A heatmap showing the Tregs Hi-C 
interaction matrix (20 kb resolution) is shown below the tracks. The plotted region of the tracks (chr3: 45859541–46859541) are indicated by the 
green area in the heatmap. The red triangles indicate the topologically associated domains (TADs) called from the Hi-C interaction data
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We then investigated the level of active enhancer marks 
(normalised H3K27ac-binding) and chromatin acces-
sibility (normalised ATAC-seq peak coverage) overlap-
ping each variant from Table 1 (Fig. 4B). A range of tissue 
restriction patterns of chromatin states were observed 
using the NIH Epigenomics Roadmap data with enhanc-
ers displaying in general a more cell type-restricted pat-
tern of H3K27ac signal compared to promoters. No 
variant was found to be located in a regulatory region that 

was exclusively active in Treg cells although rs12990970, 
rs231775 (CTLA4), rs11597367, rs12722508 (IL2RA) and 
rs5753037 (HORMAD2) are associated with a restricted 
H3K27ac pattern that included Treg. The absence of 
Treg-specific enhancers is consistent with FOXP3 bind-
ing data where FOXP3 binds many enhancer regions 
active in other T cell lineages to modify their activity in 
Treg cells [54]. Evidence suggests FOXP3 cooperates with 
other T helper-lineage specifying transcription factors 

Fig. 4 Integrating T1D 3DFAACTS SNPs with different data of T cell lineages. A Heatmap showing overlapping status between T1D 3DFAACTS 
SNPs and super-enhancers of different T cell lineage from SEdb [39], where red indicates variants overlapping with SEs and blue indicates not 
overlapping. B Enrichment of filtered T1D variants found within H3K27ac peaks from Epigenomics Roadmap and ATAC-seq peaks from multiple T 
cell lineages [30]. Column names in red indicates Tregs specific datasets
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to diversify Treg cells into subsets that mirror the differ-
ent Th-lineages [55–57]. Most regions associated with 
the variants show an increase in chromatin accessibility 
upon stimulation in Treg and T helper subsets consistent 
with increased enhancer activity upon T cell activation, 
however, in a few instances variants are in regions that 
decrease in accessibility in stimulated Treg and T helper 
subsets compared with their matched unstimulated 
counterpart. Notably these include the variants rs905671, 
rs943689 and rs614120 associated with BACH2. This is 
consistent with the reduction in BACH2 expression in 
CD4 T cells as they mature, and alteration to this repres-
sion is linked to proinflammatory effector function [58]. 
Together these data are consistent with a model in which 
causal variants alter the output of enhancers that respond 
to environmental cues [59].

Filtered variants disrupt transcription factor binding sites 
(TFBS) including a FOXP3‑like binding site
Fundamental to understanding the function of specific 
disease-associated variants is the identification of the 
potential impact of these non-coding variants on tran-
scription factor binding. Analysis of ATAC-seq datasets 
with HINT-ATAC [60], identified over 5 million active 
TF footprints in chromatin accessibility profiles from 
stimulated and resting Treg populations (Additional 
file 4). By imposing the additional FOXP3 binding anno-
tation to the footprint dataset, we identified 7 T1D-
associated variants that have the potential to alter the 
binding of 9 TFs, suggesting the molecular mechanisms 
by which these variants could impact Treg function 
(Additional file 3: Table S6). Of these 7 SNPs, one SNP 
rs3176789 is located in an active TSS chromHMM state 
region, while the others are located either in enhancers 
or flanking active TSS that are associated with active 
enhancers, suggesting these variants might interrupt 
the binding of TFs to affect enhancer functions, with the 
potential for a network effect on multiple genes.

We then used GWAS4D [61], which computes log-
odds of probabilities of the reference and alternative 
alleles of a variant for each selected TF motif to calculate 
binding affinity, to predict the regulatory effect of each 
variant (Additional file  3: Table  S7). Several of the vari-
ants are predicted to alter the binding of transcription 
factors with known roles in Treg and other T cell line-
ages including nuclear activator of T cells (NFATC2 and 
NFATC3, rs1029991) [62], interferon regulatory tran-
scription factor (IRF, rs3176789) [63], myocyte enhancer 
factor 2 (MEF2, rs6441972 and rs3176789) and FOX 
(Forkhead box, rs614120) family members. In addition, 
variant (rs1029991) has the potential to alter the binding 
of YY1, recently identified as an essential looping factor 
involved in promoter–enhancer interactions [64]. Other 

variants (rs1136618 and rs3176789) potentially alter the 
binding of the zinc finger protein ZNF384. Although 
expressed in T cells, the importance of ZNF384 in T cell 
biology has not yet been explored.

Of note, rs614120 is predicted to decrease the bind-
ing affinity of FOXA2 in this enhancer region (Addi-
tional file  3: Table  S8). As FOXA2 is not expressed in 
the immune compartment, this SNP may interfere with 
the binding of another member of the forkhead class of 
DNA-binding proteins, e.g. FOXP3, which is localised to 
this region based on our FOXP3 ChIP (Fig. 5). This sug-
gests that a model in which rs614120 impacts the expres-
sion level of BACH2 and/or AFG1L is by altered binding 
of a FOX protein to this enhancer.

Filtered variant rs1029991 is predicted to alter the 
binding of NFAT family members and/or YY1 to the 
enhancer region, but we have been unable to link the 
associated regulatory region which harbours this vari-
ant to any gene. Filtered variant rs3176789 is predicted to 
alter IRF and/or MEF2 binding, linking these transcrip-
tion factors to the regulation of the CLEC family member 
CLEC2D and two additional genes LOC374443 (C-Type 
Lectin Domain Family 2 Member D Pseudogene) and 
LOC105369728 a putative lncRNA class gene. Examina-
tion of gene expression data from Treg indicate that only 
CLEC2D is expressed in a Treg (Additional file 3: Tables 
S3 and S4). The CD69 and CLEC2D genes have previ-
ously been associated with T1D by GWAS, however we 
could not detect any significant interaction of regulatory 
regions harbouring 3DFAACTS-SNP filtered SNPS and 
the CD69 gene. Filtered variant rs6441972 is also pre-
dicted to influence the binding of MEF2 to a regulatory 
region in proximity to the promoter of CCR2. Consist-
ent with this variant disrupting CCR2 expression, CCR2 
is a target gene for eQTL rs6441972, indicating that 
rs6441972 may result in altered CCR2 expression in a 
Treg in T1D by interfering with MEF2 binding.

Filtered Treg variants identified in other autoimmune 
diseases
The primary rationale of our filtering workflow is that 
autoimmune diseases like T1D are mediated by altered 
Treg functions. Hence, using GWAS data for other auto-
immune diseases, we aimed to discover variants which 
potentially act by disrupting 3D gene regulation in Tregs. 
Like filtering fine-mapped T1D-associated SNPs, here we 
used the 3DFAACTS-SNP filtering workflow to process 
variants identified by Immunochip fine-mapping experi-
ments and meta-analysis from three studies for a broad 
range of autoimmune and inflammatory diseases. SNPs 
associated with 10 autoimmune diseases were identi-
fied, representing 221 fine-mapped SNPs associated with 
multiple sclerosis (MS) [65]; 69 SNPs identified by the 
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Fig. 5 A visualisation of the BACH2 region of filtered T1D SNPs on chr6: 89774131–90774131. Tracks displayed below the chromosome 6 ideogram 
display workflow datasets [3DFAACTS-SNP filtered SNPs, FOXP3-binding sites, Treg ATAC-seq peaks, statistically significant Hi-C interactions in Tregs 
(5 kb resolution), promoters and enhancers along with cell type-specific data including UCSC Gene Transcript information, T cell subsets (Thelper1 
and Treg) expression data, super-enhancer data, 15-state ChromHMM track of T cell lineages. A heatmap showing the Tregs Hi-C interaction matrix 
(20 kb resolution) is shown below the tracks. The plotted region of the tracks (chr6: 89774131–90774131) are indicated by the green area in the 
heatmap. The red triangles indicate the topologically associated domains (TADs) called from the Hi-C data
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meta-analysis of celiac disease (CeD), rheumatoid arthri-
tis (RA), systemic sclerosis (SSc), and T1D [66] (which 
we refer to the 4AI dataset); and 244 SNPs identified by 
the meta-analysis of GWAS datasets for ankylosing spon-
dylitis (AS), Crohn’s disease (CD), psoriasis (PS), pri-
mary sclerosing cholangitis (PSC) and ulcerative colitis 
(UC) [67] (which we refer as 5ID dataset). Applying the 
3DFAACTS-SNP pipeline we identified 9, 3 and 6 filtered 
variants from the MS, 4AI and 5ID datasets, respectively 
(Additional file 3: Table S9). We identified putative target 
genes for these disease associated variants by Hi-C inter-
actions resulting in 34, 8 and 23 genes (60 unique genes) 
linked to MS, 4AI and 5ID, respectively. Of these 34/60 
are differentially expressed in Tregs isolated from T1D 
patients compared to healthy controls highlighting the 
potential of 3DFAACTs-SNP to identify candidate SNP–
target gene interactions in disease (Additional file  3: 
Table S9). Many of these genes have either known roles 
in Treg differentiation, stability and function (CD48, 
IL6ST, EZR, ELMO1, IL18R1) [68–72], or altered expres-
sion in human Treg in autoimmune disease (SLAMF1, 
ANKRD55, TAGAP) [73–75].

Of the variants identified by 3DFAACTS-SNP, one vari-
ant (rs60600003) located at a locus on chromosome 7 was 
found to be associated with several diseases, including 
MS [65], celiac and systemic sclerosis [66], suggesting its 
interacting gene, ELMO1, may contribute to a common 
Treg defect in these diseases (Additional file 3: Table S9). 
When compared with the 36 variants identified from 
our T1D dataset analysis, two variants, rs61839660 on 
chromosome 10 and rs3087243 on chromosome 2 were 
also prioritised by 3DFAACTS-SNP analysis of the 5ID 
and 4AI datasets, respectively, implicating their inter-
acting genes IL2RA, RBM17, PFKFB3 and LINC02649 
(rs61839660), RAPH1 (rs3087243) are functionally impli-
cated in the development of these diseases. While differ-
ent variants were identified in the analysis of the various 
disease datasets, the regulatory elements in which these 
variants reside can be linked by Hi-C data to common 
candidate target gene such as PFKFB3 (rs12722496 from 
T1D and rs947474 from 4AI) and RAPH1 (rs231775 from 
T1D and rs3087243 from 4AI). This is consistent with the 
view that common mechanistic pathways underlie some 
autoimmune diseases, although the specific risk allele 
within a locus can be disease-specific [76].

Identifying new variants that are candidates for impacting 
autoimmune disease
Most variants identified by GWAS have small effect sizes 
that together only represent a fraction of the heritability 
predicted by phenotype correlations between relatives 
[77]. To account for this missing heritability, various 
models have been proposed including a highly polygenic 

architecture with small effect sizes of the causal variants 
[78, 79], rare variants with large effect size [80, 81] and 
epistatic mechanisms including gene–gene and gene–
environment interactions [82, 83]. As a consequence 
many causal variants with small effect sizes are unlikely 
to reach genome wide significance in current GWAS, 
whereas rare variants are often under-represented on 
SNP arrays [84]. Lastly the preponderance of studies uti-
lise populations of European descent which can result in 
a bias for SNPs with a higher minor allele frequencies in 
Europeans compared to other populations, potentially 
limiting the relevance of these SNPs to the associated 
traits in non-Europeans [85]. As an alternative approach, 
to identify novel putative autoimmune disease-associ-
ated SNPs independently of association studies, we sam-
pled 5,888,594 common variants (MAF > 0.1) from the 
Genome Aggregation Database (gnomAD) (version 3.0) 
[86] as inputs to our filtering workflow, identifying a total 
of 9376 gnomAD-3DFAACT SNPs (Additional file  3: 
Table S10).

In order to characterise the SNPs, we used GIGGLE 
[87] to compare the regions in which filtered SNPs reside 
against 15 predicted chromHMM genomic states across 
127 cell types and tissues from Epigenomic Roadmap 
[30] (Fig. 6 left and Additional file 1: Fig. S14), calculat-
ing positive and negative enrichment scores according to 
overlapping sets. Interestingly, there was strong positive 
enrichment signal in active TSS (TssA), flanking active 
TSS (TssAFlnk) and enhancers (Enh) states in thymus, 
HSC, B- and T- cell groups, while only enrichment of 
TssA was observed across all cell types, and enrichment 
of TssAFlnk and Enh are seen in only immune-related 
cell types. This suggest that the enhancer regions related 
to our identified SNPs are highly specific to immune 
cells while the promoter regions and by extension their 
target genes are broadly expressed (Additional file 1: Fig. 
S14). Additionally, negative enrichment of the quiescent 
(Quies) states was observed in all cell types whereas het-
erochromatin (Het) exhibited a negative enrichment in 
some specific cell types (foreskin fibroblast primary cells) 
and cell lines (IMR90, HVEC and HMEC).

Treg Hi-C data were used to explore the FOXP3-asso-
ciated regulatory networks that include these SNPs in a 
Treg. For the regions identified to interact with the 9,376 
variants located in FOXP3 binding regions by Hi-C, we 
observed positive enrichments of regulatory states such 
as TssA, TssAFlnk, Tx, Txwk, EnhG and Enh in blood, 
HSC, B and T cells, supporting a regulatory role for these 
interacting regions (Fig. 6 right and Additional file 1: Fig. 
S15). 4,968 genes are found to interact with the identi-
fied filtered gnomAD-3DFAACTS SNPs via the Treg 
Hi-C interactions (Additional file 3, Table S10). Gene set 
enrichment analysis of these genes was performed using 
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the Hallmark genes sets and gene ontology (GO) terms 
from the Molecular Signatures Database (MSigDB) [88]. 
Significantly enriched (adjusted P-value < 0.05) gene sets 
that are highly biological relevant were found, includ-
ing T cell activation, regulation and differentiation GO 
terms and autoimmune/Tregs-related gene sets, includ-
ing TNFα via NF-κB, IL6/JAK/STAT3, and IL2/STAT5 
signalling pathways (Additional file 1: Fig. S16). Together, 
these data indicate that using the 3DFAACTS SNP pipe-
line in combination with the gnomAD database has the 
potential to prioritise potential functional variants in a 
specific cell type and identify their interacting genes with 
potential molecular mechanisms of action.

Discussion
GWAS and fine-mapping studies have identified over 50 
candidate regions for T1D progression [11, 13], however 
a broad understanding of the underlying disease mech-
anism has been difficult to elucidate without relevant 
functional information derived from cell-specific mate-
rial. With the availability of whole genome annotation, 
we see that the majority of genetic risk lies in non-cod-
ing regions of the genome and is enriched in regulatory 

regions including promoters and enhancers. Tradition-
ally, to understand how these variants may function they 
have been assigned to the nearest gene or genes within 
a defined linear distance. However, this approach ignores 
the role of three-dimensional connectivity by which 
enhancers and repressors function to regulate transcrip-
tion [89–91].

Recent approaches use statistical co-localisation tests 
to link potential causal SNPs and quantitative trait loci 
(QTLs) to identify the genes regulated by GWAS loci 
[92]. These methods require many samples in the correct 
cell type or physiological context and to date work best 
for local/cis QTLs, generally less than 1 Mb in linear dis-
tance [89]. An alternative approach used in this study and 
others [93, 94] is to make use of chromosome conforma-
tion capture data to directly connect disease-associated 
regulatory regions to their target genes. As growing cel-
lular and genomics evidence indicate that dysregulation 
of the Treg compartment contributes to autoimmune 
disease [25, 95, 96], we generated a cell type-specific 3D 
interaction profile in human regulatory T cells to estab-
lish an in silico, candidate loci reduction method to iden-
tify T1D-candidate regions that function in a Treg and 

Fig. 6 Enrichment of gnomAD 3DFAACTS SNPs (left panel) and their interacting regions (right panel) found within NIH Epigenomics Roadmap 
samples. Enrichment test of filtered gnomAD SNPs against chromHMM states from 129 tissues and cell types from Epigenomics Roadmap using 
GIGGLE [87]. Green coloured regions indicate positive enrichment of variants within cell types and chromHMM states, while purple-coloured 
regions indicate negative enrichment. Here we subset to enrichment in three tissue groups, including thymus, HSC and B cell and blood and T cell, 
enrichment results of all samples can be found in Additional file 1: Fig. S14 and S15
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the genes they affect. Open chromatin regions identified 
by ATAC-seq and regulatory regions identified by epi-
genetic marks such as histone H3K27ac can number in 
the tens of thousands in a specific cell type [40, 97], we 
therefore initially focused on regulatory regions bound 
by the Treg-specific transcription factor FOXP3 given 
the essential role of FOXP3 in the Treg functional phe-
notype we hypothesised that candidate variants that are 
found within open, FOXP3-bound regions are likely to 
alter immunological tolerance. In addition, as different 
autoimmune diseases share genetic risk regions [13], we 
speculated that by identifying specific genetic variants 
that may contribute to T1D through the dysregulation 
of regulatory T cell functional fitness, this could be via 
mechanisms consistent across many autoimmune dis-
eases [1, 98, 99].

The design and implementation of the 3DFAACTS-
SNPs workflow champions a new data-centric view of 
functional genomics analysis, with the development of 
cell type-specific epigenomic and 3D datasets enabling 
researchers to narrow down on molecular changes 
at a fine-scale resolution. However, the results of this 
study suggests that cell type-specific viewpoints can be 
broadened to a much more lineage (T cell) or immune 
(e.g. innate or adaptive) system-specific level. While we 
focused on Treg cells and expected to identify Treg-
specific enhancer-controlled targets, based on the cri-
teria of inclusion of FOXP3 binding data, no functional 
variant was uniquely accessible in only Tregs, nor were 
they specifically enriched with Treg-exclusive H3K27ac 
modified regions (Fig. 4B). This likely reflects the pro-
pensity of FOXP3 to bind to enhancers active in mul-
tiple CD4 + T cell lineages [54] (Fig. 4) to modify their 
output in a Treg-specific manner and therefore we can-
not currently discern whether these filtered variants act 
predominantly in Tregs or on other CD4 + T cell sub-
sets. The incorporation of context- and CD4 + T cell 
subset-specific gene expression [100] and epigenomic 
[94, 101] data into the 3DFAACTS-SNPs workflow may 
help resolve this. Although we have focused here on 
using FOXP3-binding as a filtering criteria, it is known 
that other FOXP3-independent pathways are important 
for Treg function and the 3DFAACTS-SNPs workflow 
could be modified to incorporate other TFs or other 
epigenetic profiles such as CpG-demethylated regions 
[102] to further explore the relationship between dis-
ease-associated variants and these pathways.

In total using the 3DFAACTS-SNPs workflow we iden-
tified 47 novel candidate genes connected to variants in 
12 T1D risk loci that could plausibly function in a Treg 
whereas we could not define plausible candidate Treg-
specific activity at the other T1D risk regions that met all 
our filtering criteria. This may indicate that these other 

risk-regions are active in immune cell types other than 
a Treg or they impact genes and regulatory elements 
within a Treg that are not dependent upon FOXP3. As 
an example of how the 3DFAACTS-SNPs workflow can 
lead to testable insights into the molecular mechanisms 
of non-coding variants, the SNP rs614120 was found 
to be located in a FANTOM5 annotated T cell-specific 
enhancer region in the first intron of the BACH2 gene, 
and is predicted to disrupt the binding of Forkhead Tran-
scription factor family member FOXA2 (Fig. 5 and Addi-
tional file 3: Table S6). However, FOXA2 is not expressed 
in T cells, indicating that rs614120 might disrupt the 
binding of other Forkhead family members which bind 
to very similar DNA sequences, such as FOXP3, which is 
known to bind in this region (Fig.  5). The 3DFAACTS-
SNPs workflow further indicates that this enhancer 
region containing rs614120 interacts with the promoter 
of BACH2, forming a distal promoter–enhancer inter-
actions, suggesting that rs614120 may disrupt FOXP3 
binding to the enhancer leading to the dysregulation 
of BACH2 expression. It has been recently shown that 
Bach2 plays roles in the regulation of T cell receptor sig-
nalling in Tregs, including averting premature differentia-
tion and assisting peripherally induced Treg development 
[103]. Therefore, we suggested that this single variant 
may regulate BACH2 expression and ultimately may 
affect the progression of T1D, and this requires further 
experiments to verify. This can further aid the develop-
ment of novel therapeutic approaches to restore function 
in Treg of patients with this genotype. This finding also 
suggests that variants can contribute to the causal mech-
anisms of disease by altering the efficacy/stability of TF 
binding in important regions such as enhancers or SEs.

The power of 3DFAACTS-SNPs is its ability to incor-
porate chromosome organisation in 3D and identify 
long-range interactions involving variant-containing 
regulatory regions leading to the identification of target 
genes that have not previously been associated with these 
diseases associated risk regions. This is illustrated by the 
finding that the majority (39/46) of the genes that interact 
with the T1D variants are not the closest gene in linear 
proximity and of these interacting genes some have not 
been previously associated with any autoimmune disease.

The idea that high-order nuclear organisation coordi-
nates transcription in times of immune challenge or tol-
erance was recently shown in a study demonstrating that 
3D chromatin looping topology is important for a subset 
of long non-coding RNAs (lncRNAs), termed immune 
gene-priming lncRNAs (IPLs), to be correctly positioned 
at the promoters of innate genes [46]. This positioning of 
the IPLs then allows for the recruitment of the WDR5–
mixed lineage leukaemia protein 1 (MLL1) complex to 
these promoters to facilitate their H3K4me3 epigenetic 
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priming [46]. An example of long-range enhancer gene 
interactions in conveying autoimmune-disease risk in 
Treg cells has also recently been published [104]. In this 
work a distal enhancer at the 11q13.5 locus associated 
with multiple autoimmune-disease risk, including T1D 
was found to participate in long-range interactions with 
the LRRC32 gene exclusively in Treg. Deletion of this 
enhancer in mice resulted in the specific loss of Lrcc32 
expression in Treg cells and the inability of Treg to con-
trol gut-inflammation in an adoptive transfer colitis 
model. Furthermore CRISPR-activation experiments in 
human Tregs identified a regulatory element located in 
proximity to a risk variant rs11236797 that is capable of 
influencing LRRC32 expression. This data together high-
lights the mechanistic basis of how non-coding variants 
may function to interfere with Treg activity in disease. 
This interaction was present in our Hi-C dataset, but it 
was filtered out as the enhancer is not bound by FOXP3, 
showing the cell type-specific filtering power, as well as 
conserved connectivity in T cells. Coordinated genome 
topology has also been shown in immune cell lineage 
commitment, both at a locus [105, 106] and compart-
ment level [107], consistent with the concept of immune 
transcriptional “factories” where genes congregate in 
regions of the nucleus to undergo coordinated transcrip-
tional activation [108].

Although a shared genetic aetiology between T1D and 
other immune-mediated diseases has been proposed, we 
did not find a large overlap between the variants or inter-
acting genes identified by 3DFAACTS SNP in T1D and 
other autoimmune disease datasets. The reason for this 
is not clear, but may be a result of the relatively low num-
ber of input SNPs for the other autoimmune diseases. 
Irrespective of this, two candidate causal SNPs and genes 
including rs3087243 (RAPH1) and rs61839660 (IL2RA, 
RBM17, PFKFB3, LINC02649) were found to be common 
between T1D and other autoimmune diseases. Several of 
these genes such as IL2RA and PFKFB3 have previously 
been implicated in the development of autoimmune dis-
eases or play a role in critical T cell pathways, suggesting 
these genes are likely targets that explain the molecular 
function of the risk variants. PFKFB3 is involved in both 
the synthesis and degradation of fructose-2,6-bispho-
sphate, a regulatory molecule that controls glycolysis 
in eukaryotes. Regulation of glycolysis has increasingly 
been implicated in shaping immune responses [109] 
and PFKFB3 has been associated with multiple auto-
immune diseases [110]. Importantly, reduced PFKFB3 
enzyme activity leading to redox imbalance and apopto-
sis has been reported in CD4 + T from RA patients [111] 
directly linking the PFKFB3 gene to the disease. This pro-
vides molecular insight into environmental pressure on 
immune cell function driving loss of tolerance.

A highly polygenic architecture with small effect sizes 
of many causal variants [78, 79] has been proposed to 
account for missing heritability associated with phe-
notypic traits. Most of these small effect size variants 
have yet to be identified. Here we have begun to inves-
tigate whether common genetic variation found within 
populations could contribute to autoimmune diseases by 
altering gene-expression by altering enhancer and pro-
moter output. In this study we illustrate this potential by 
accessing large population-scale variant resources in the 
gnomAD database, identifying 9376 filtered common 
variants that have the potential to impact Treg function. 
Based on the search of discovered associations of auto-
immune diseases (EFO_0005140) from the GWAS Cat-
alog [112], over half of the variants surveyed here have 
not been used in large-scale autoimmune disease GWAS 
[11, 67, 113–119], precluding their assessment for poten-
tial disease risk in sampled disease/control populations. 
While filtered variants identified here are biased towards 
the inclusion of FOXP3-binding within the workflow, 
their potential immune response impact is highlighted 
by the finding that their interacting regions are positively 
enriched for transcription and enhancer-associated chro-
matin states (Fig. 6, Additional file 1: Fig. S14 and S15). 
This accessibility of regulatory variants among a popu-
lation could potentially explain additional variation in 
effector responses in T cell activation [120], relevant not 
only to autoimmune disease, but also to broader immune 
responses for example to SARS-CoV-2.

In conclusion, while we initially restricted the applica-
tion of 3DFAACTS-SNP to Treg-centric genome-wide 
interaction frequency profiles to give functional anno-
tation in T1D data, we have demonstrated that valid 
interacting pairs from Hi-C dataset can be functionally 
mapped with high confidence from multiple disease data-
sets as well as whole genome variant datasets, which pre-
sents a valuable resource in establishing cell type-specific 
interactomes. Coupled with cell type-specific genomic 
data available from public repositories, such as the NIH 
Roadmap [30], Blueprint [121] and ENCODE [122] pro-
jects, this workflow provides a useful mechanism to iden-
tify potential mechanisms by which non-coding variants 
regulate disease causing genes, and identifies new targets 
for therapeutic modulation to treat or prevent disease.

Conclusion
Based on Treg ATAC-seq, Hi-C data, promoter and 
enhancer annotation and FOXP3 binding site annotation, 
we have developed a variant filtering workflow named 
3DFAACTS-SNP to identify potential causative SNPs 
and their 3D interacting genes for T1D from GWAS fine-
mapped variants. Our workflow can easily be used with 
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variants associated with other autoimmune diseases or 
even large population-scale variants.

Methods
Cell preparation
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from whole blood obtained from healthy human 
donors with informed consent at the Women’s and Chil-
dren’s Hospital, Adelaide (ethics approval and consent see 
“Declarations” section). Cells were labelled with the fol-
lowing fluorochrome conjugated anti-human monoclonal 
antibodies: anti-CD4 (BD Biosciences, BUV395 Mouse 
Anti-Human), anti-CD25 (BD Biosciences, BV421), anti-
CD127 (BD Biosciences, PE-CF594) and viability dye (BD 
Biosciences, BD Horizon Fixable Viability Stain 700) for 
FACS analysis by surface expression staining. Regulatory 
T (Treg) cells were sorted as CD4 + CD25hi CD127dim 
population (> 90% purity). Following cell sorting Treg 
cells were plated at 100,000 cells per well in a 96-well 
U-bottom plate and maintained in complete X-VIVO 15 
culture media (X-VIVO 15 Serum-free media supple-
mented with 2  mM HEPES pH 7.8, 2  mM l-glutamine 
and 5% heat inactivated human serum) in 400  U/mL 
rIL-2 for 2 h at 37 °C in a humidified 5%  CO2 incubator 
prior to cell preparation for ATAC-seq experiment.

ATAC‑seq library preparation and high‑throughput 
sequencing
Treg cells were rested for 2-h post-sort and then were 
either left untreated or stimulated with beads conjugated 
with anti-CD3 and anti-CD28 antibodies (Dynabeads 
Human T-Expander CD3/CD28, Gibco no. 11141D, Life 
Technologies) in complete X-VIVO 15 culture in 400 U/
mL rIL-2 at a cell/bead ratio of 1:1 for 48 h. After 48 h 
Dynabeads were removed from culture medium by mag-
netic separation. Omni ATAC-seq was then performed 
as described previously [154] with minor modifications. 
Briefly, cells with 5–15% dead cells were pre-treated with 
200 U/µL DNase (Worthington) for 30 min at 37 °C prior 
to ATAC-seq experiments. Treg cells (50,000) were lysed 
in 50 µL of cold resuspension buffer (RSB: 10 mM Tris–
HCl pH 7.4, 10 mM NaCl, and 3 mM  MgCl2) containing 
0.1% NP40, 0.1% Tween-20, and 0.01% digitonin on ice 
for 3  min. The reaction was then washed with 1  mL of 
ATAC-seq RSB containing 0.1% Tween-20 by centrifu-
gation at 500 xg for 10 min at 4  °C and the nuclei were 
resuspended in 50 µL of transposition mix (30 µL 2 × TD 
buffer, 3.0  µL Tn5 transposase, 16.5  µL PBS, 0.5  µL 1% 
digitonin and 0.5 µL 10% Tween-20) (Illumina Inc). The 
transposition reaction was incubated at 37 °C for 45 min 
in a thermomixer with 1000  rpm mixing. The reaction 
was purified using a Zymo DNA Clean and Concentra-
tor-5 (D4014) kit. All libraries were amplified for a total 

of 9 PCR cycles and size selection was carried out to 
enrich for a fragment size window of 200–900  bp prior 
to sequencing. Libraries were quantified by PCR using a 
KAPA Library Quantification Kit for NGS (KAPA Biosys-
tems, Roche Sequencing). Barcoded libraries were pooled 
and sequenced on a paired-end 75-cycle Illumina Next-
Seq 550 High-Output platform (Illumina) to an average 
read depth of 37.1 million read pairs (± 4 million) per 
sample.

Treg sample preparation, Hi‑C library production 
and high‑throughput sequencing
Cord blood was obtained with informed consent at 
the Women’s and the Children’s Hospital, Adelaide 
(HREC1596; WCHN Research Ethics Committee). 
Mononuclear cells were isolated from cord blood post-
partum as previously described [123]. Briefly, cord blood 
 CD4+CD25+(Treg) were isolated from purified mono-
nuclear cells using a Regulatory  CD4+CD25+T Cell Kit 
(Dynabeads; Invitrogen, Carlsbad, CA). Ex vivo expansion 
of isolated T cell populations (1 ×  106 cells per well in a 
24-well plate) were performed in X-Vivo 15 media supple-
mented with 5% human AB serum (Lonza, Walkersville, 
MD), 20 mM HEPES (pH 7.4), 2 mM l-glutamine, and 500 
U/mL recombinant human IL-2 (R&D Systems, Minne-
apolis, MN) in the presence of CD3/CD28 T cell expander 
beads (Dynabeads; Invitrogen; catalogue no. 111-41D) at 
a bead-to-cell ratio of 3:1. Cell harvesting, formaldehyde 
cross-linking (2%) and nuclei isolation was per [156,157]. 
Treg cell nuclei were frozen in aliquots of 1 ×  107. The 
in  situ Hi-C procedure was carried out as per Rao et al., 
(2014) [124] with the following modifications MboI diges-
tion was carried out in  CutSmart® Buffer (NEB) and 
biotin-14-dCTP (Invitrogen; catalogue no. 19518018) 
replaced biotin-14-dATP in the reaction to end-fill MboI 
overhangs. To generate DNA suitable for library construc-
tion ligated DNA in TE buffer (10 mM Tris–HCl, pH8.0 
and 0.1 mM EDTA, pH 8.0) was sheared to an average size 
of 300–500  bp using a Covaris S220 (Covaris, Woburn, 
MA) instrument with the following parameters; 130ul in 
a microTube AFA fibre, 140 peak incidence power, 10% 
Duty cycle 10%, 200 cycles per burst for 55 s. Sheared frag-
ment ends were made suitable for adapter ligation with a 
 NEBNext® Ultra II End Repair/dA-Tailing Module (NEB 
#E7546). For adapter ligation the End Prep reaction was 
split into two and appropriately diluted NEBNext Adap-
tor ligated to fragment ends using the NEBNext Ultra II 
Ligation module. Library size distribution was determined 
using an Experion DNA 1K kit and library concentra-
tion estimated by real-time qPCR using a Kapa universal 
Library quantitation kit (Roche Sequencing Solutions; 
07960140001). Hi-C libraries were sequenced on an Illu-
mina NovaSeq™ 6000 Sequencing System (2 × 150 bp).
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ATAC‑seq data analysis
The sequencing data quality was determined using FastQC 
(ver. 0.11.7) [159] followed by trimming of Nextera adapt-
ers using cutadapt (ver. 1.14) [125]. Trimmed reads were 
aligned to the human hg19 (hs37d5) reference genome 
using Bowtie2 (ver. 2.2.9) [126] with ‘-X 2000’ setting. For 
each sample quality trimming was performed with option 
‘-q 10’ with unmapped and non-primary mapped reads 
filtered with option ‘-F 2828’ using Samtools (ver. 1.3.1) 
[127]. PCR duplicates were then removed from Uniquely 
mapped paired reads using Picard (ver. 2.2.4). Mitochon-
drial reads, reads mapping to ENCODE hg19 blacklisted 
regions and mitochondrial blacklisted regions were filtered 
out using BEDTools (ver. 2.25.0). The TSS enrichment score 
for each replicate was determined using ATACseqQC 
[128]. For peak calling the read start sites were adjusted 
to represent the centre of Tn5 transposase binding event. 
Peaks were called from ATAC-seq data using MACS2 (ver. 
2.1.2) [129] with parameters ‘—atac-seq —paired-end —
organism = hg19 —P 0.05’ [130, 131] and HINT-ATAC 
[60] was used to call footprints from the ATAC-seq peaks 
with parameters ‘—atac-seq —paired-end.

The peak summits from resting and stimulated Treg were 
concatenated and sorted by chromosome and then by posi-
tion. The sorted peak summits were then handled using 
an in-house Python script ATACseqCollapsing.py, which 
adapted a peak processing approach described by Corces 
et  al. [132] to generate a list of non-redundant peaks. 
Briefly, through an iterative procedure, the peak summits 
are extended by 249 bp upstream and 250 bp downstream 
to a final width of 500 bp. Any adjacent peak that overlaps 
with the most significant peak (significance value defined 
by MACS2) within the interval is removed. This process 
iterates to the next peak interval resulting in a list of non-
redundant significant peaks. Finally, to be consistent with 
other annotations in the 3DFAACTS-SNP workflow, the 
ATAC peaks were lifted over to the hg38 genome.

Hi‑C data analysis
The raw sequencing read files were first aligned to the 
human hg38 genome using BWA-mem with setting 
“-SP5M”. The mapped read pairs with mapping quality 
(MAPQ) over 30 were selected to process with pairtools 
[133] to identify Hi-C interactions. The interactions are 
then mapped to genomic bins of 5 kb and 20 kb resolu-
tion using cooler [134]. The contacts of 5  kb bins were 
further processed to identified intra-chromosomal sta-
tistically significant (BH adjusted P-value < 0.05) inter-
actions over a background model using MaxHiC [135]. 
Finally, a count filter (at least 5 sequencing read pairs 
mapped to the interaction) and a distance filter (distance 
between two interacting bins must larger than 5 kb) were 

applied to the identified significant interactions to select 
Tregs specific chromatin interactions, which were used 
in the 3DFAACT-SNP workflow.

RNA‑seq data processing
The raw sequencing data were first trimmed using Adap-
terRemoval (ver 2.2.1a) [136] with default parameters to 
remove sequencing adapters. Trimmed reads were then 
aligned to hg38 using STAR  (ver 2.7.0d) [137]. The result-
ing BAM files were converted into bedgraph files using 
bamCoverage from deepTools [138] with count normal-
ised using counts per million mapped reads (CPM).

Topologically associated domain identification
Hi-C interactions of Tregs were mapped to equal-size 
bins (20  kb) of the hg38 genome and normalised using 
ICE [32], resulting in a normalised interaction matrix. 
The matrix was then used as input to identify topologi-
cally associated domains (TADs) via TopDom [139].

Visualisation and downstream analyses
Gene set enrichment analysis (GSEA) was performed 
using a function enrichr from the R package cluster-
Profiler [140] with the hallmark gene sets and C5 gene 
sets (gene ontology terms) from Molecular Signatures 
Database (MSigDB). Adjusted P-value (Benjamini–
Hochberg adjusted) of 0.05 is set as the significant 
threshold. Visualisation of normalised Hi-C interaction 
matrices (Figs. 2, 3, and 5, Additional file1: Fig. S4–S12) 
was performed on 40  kb resolution using an in-house 
R function hicHeatmap. The visualisations of individual 
filtered T1D-associated SNP loci (Figs. 2, 3, 5 and Addi-
tional file  1: Fig. S4–S13) were constructed using the 
R packages Gviz [141], GenomicInteractions [142] and 
coMET [143].
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