
Wu and Choi ﻿Epigenetics & Chromatin            (2023) 16:5  
https://doi.org/10.1186/s13072-023-00479-6

METHODOLOGY

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Epigenetics & Chromatin

The impact of spatial correlation 
on methylation entropy with application 
to mouse brain methylome
Xiaowei Wu1* and Joung Min Choi2 

Abstract 

Background  With the advance of bisulfite sequencing technologies, massive amount of methylation data have been 
generated, which provide unprecedented opportunities to study the epigenetic mechanism and its relationship to 
other biological processes. A commonly seen feature of the methylation data is the correlation between nearby CpG 
sites. Although such a spatial correlation was utilized in several epigenetic studies, its interaction to other characteris-
tics of the methylation data has not been fully investigated.

Results  We filled this research gap from an information theoretic perspective, by exploring the impact of the spatial 
correlation on the methylation entropy (ME). With the spatial correlation taken into account, we derived the analytical 
relation between the ME and another key parameter, the methylation probability. By comparing it to the empirical 
relation between the two corresponding statistics, the observed ME and the mean methylation level, genomic loci 
under strong epigenetic control can be identified, which may serve as potential markers for cell-type specific meth-
ylation. The proposed method was validated by simulation studies, and applied to analyze a published dataset of 
mouse brain methylome.

Conclusions  Compared to other sophisticated methods developed in literature, the proposed method provides a 
simple but effective way to detect CpG segments under strong epigenetic control (e.g., with bipolar methylation pat-
tern). Findings from this study shed light on the identification of cell-type specific genes/pathways based on methyla-
tion data from a mixed cell population.
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Background
DNA methylation has been recognized as a key pro-
cess underlying epigenetics, which involves transferring 
methyl groups to cytosine bases of the DNA molecule 
[1]. As the gold-standard for detecting DNA methylation, 

bisulfite sequencing combines bisulfite treatment with 
routine sequencing to determine the methylation state at 
single-nucleotide resolution [2, 3]. By checking the pres-
ence of cytosines or thymidines on the mapped short 
reads for bisulfite-treated DNA, the methylation state of 
each CpG dinucleotide is obtained. At the read level, the 
combination of methylation states of neighboring CpG 
dinucleotides contains important information, which 
may be used to uncover the role of each genomic locus 
in the epigenetic control mechanism. As an illustrative 
example, Fig.  1 shows the methylation states on a CpG 
segment of nine dinucleotides obtained from the pro-
moter region (95 bp) of the prodynorphin gene in human 
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brain [4]. An immediate observation from this example 
is that the CpG sites that are spatially close together are 
likely to be in the same methylation state. Such a phe-
nomenon of co-methylation over short (e.g., up to 1–2 
kb) distances has been reported in literature [5–7], and 
utilized to predict [8] or impute [9] DNA methylation, 
however, its impact on the characteristics of the methyla-
tion data has not been fully investigated.

For a single CpG site, its methylation state can be mod-
eled with a Bernoulli random variable whose distribution 
is featured by the success probability. When it comes to 
multiple CpG sites (i.e., a CpG segment), appropriate 
characteristics are needed to summarize the joint distri-
bution of the combinatorial methylation states (not nec-
essarily independent) [10]. One of such characteristics is 
the methylation entropy, which is a quantitative measure 
of the variability in DNA methylation shown in sequenc-
ing reads [11, 12]. Generally speaking, low entropy 
indicates less stochasticity, which, in the context of meth-
ylation, refers to strong epigenetic control such as allele 
specific methylation (ASM) [13, 14] or cell-type specific 
methylation (CSM) [11]. On the other hand, high entropy 
corresponds to more stochastic methylation events. 
Therefore, CpG segments with low methylation entropy 
tend to be biologically more interesting as they may rep-
resent differentially methylated regions (DMRs) [15] 
or serve as potential markers for CSM [16]. Despite the 

research progress, there is, however a lack of quantita-
tive assessment on how methylation entropy is related to 
the underlying probability parameter, especially with the 
involvement of co-methylation. This motivates us to fill 
such a research gap and look into the resulting applica-
tion on real data of DNA methylation. It is worth pointing 
out that, the characteristic for summarizing the distribu-
tion of methylation state may refer to either parameter 
of the probabilistic model or statistic calculated from the 
methylation data. Though sometimes misused in litera-
ture, these two implications need to be distinguished to 
avoid possible misunderstanding in research. For clarifi-
cation, we provide statistically rigorous definitions in the 
"Methods" section for the methylation-related param-
eters and statistics.

In this paper, we first obtained an explicit relation 
between the two parameters, the methylation probabil-
ity and the methylation entropy, under the assumption 
of independent CpG sites. We then proposed a good-
ness-of-fit test to check the existence of spatial correla-
tion on the CpG segment under consideration. More 
generally, in the presence of spatial correlation, we man-
aged to derive the joint distribution of the methylation 
states on the CpG segment, and based on which attained 
the relation between the two parameters numerically. 
Simulation studies validated the proposed test and pin-
pointed several factors that affect the power of the test. 
Through additional simulations, we compared the ana-
lytical relation between the two parameters with the 
empirical relation between the two corresponding sta-
tistics, to illustrate the impact of spatial correlation. The 
proposed method was applied to a published dataset of 
mouse brain methylome to investigate the behavior of 
the observed methylation entropy as a function of the 
mean methylation level. Our real data analysis showed 
that, the proposed method was able to identify CpG seg-
ments exhibiting bi-modal methylation patterns, which 
appeared to be related to DMRs detected between neu-
ron and glia cells. We further examined how the pro-
portion of the identified CpG segments changes from 
the 2-week stage to the 4-week stage in the mouse front 
cortex.

Methods
Methylation probability, methylation entropy, and their 
relation in the absence of spatial correlation
The key parameter for describing DNA methylation is the 
methylation probability (MP) of each CpG site, defined as 
the probability of observing a methylated cytosine on the 
site. For a CpG site under consideration, its methylation 
state can be described by a random variable X ∼ Bern(p) 
with outcome “1” representing methylation and “0” 
otherwise, where p ∈ [0, 1] is the MP. Therefore, for a 

Fig. 1  An example of methylation states on a genomic region of 
nine CpG dinucleotides obtained from promoter region (95 bp) 
of prodynorphin gene in human brain [4]. Each line represents 
a sequencing read, with open and filled circles indicating 
unmethylated and methylated CpG sites, respectively
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CpG segment involving n sites, the methylation states 
of the n contiguous sites form a binary random vector 
X = [X1,X2, . . . ,Xn]

T . This random vector represents 
the “methylation pattern” exhibited on the n-CpG seg-
ment. Marginally, Xi ∼ Bern(pi), pi ∈ [0, 1], 1 ≤ i ≤ n , 
but the joint distribution of X also depends on the cor-
relation among the CpG sites. It has been found that, 
such a between-site correlation, hereinafter called the 
spatial correlation, is often nonnegligible [5–7] and plays 
important roles in the analysis of methylation data, such 
as detecting epigenome-wide association signals [17], 
discovering regions associated with exposure [18] or with 
differential/variabe methylation [19], and hunting epi-
genomic bumps/peaks [20]. We call X a correlated Ber-
noulli random vector with parameters p and R , where 
p = [p1, p2, . . . , pn]

T denotes the mean and

is the correlation matrix, rij ∈ [−1, 1], 1 ≤ i �= j ≤ n . 
Note, the range of the correlation matrix is constrained, 
see details in Prentice [21] and Chaganty and Joe [22]. 
There are two special methylation patterns that are of 
particular interest: (1) homogeneous methylation, this 
refers to the case that pi = p, 1 ≤ i ≤ n , i.e., the n CpG 
sites share a common MP; and (2) exchangeable (or com-
pound symmetric) correlation, corresponding to rij = r 
for 1 ≤ i �= j ≤ n , i.e., the spatial correlation is fixed, not 
depending on the distance between the CpG sites.

The MP at single-CpG-site level plays a critical role in 
differentiating samples (e.g., purified cells), however, for 
analyzing epigenetic heterogeneity in mixed samples 
(e.g., bulk tissues), the MP has its limitations, and other 
characteristics at the read level are required. One of such 
characteristics is the methylation entropy (ME), defined 
as a measure of the average level of “information” or 
“uncertainty” inherent to the methylation pattern exhib-
ited across contiguous CpG sites [11, 12]. Different with 
the MP which only characterizes the methylation state at 
each single CpG site, the ME summarizes the joint distri-
bution of the methylation states at multiple sites in a CpG 
segment. By leveraging read-level stochasticity, the ME 
can be used to evaluate the variation of the methylation 
pattern on the CpG segment.

Consider an n-CpG segment fully covered by m 
sequencing reads. In practice, n is usually chosen to 
be a small integer, e.g., n = 4 . This is to guarantee that 

R =









1 r12 · · · r1n
r21 1 · · · r2n
...

...
. . .

...
rn1 rn2 · · · 1









enough CpG segments can be extracted from real data 
and the number of sequencing reads in each CpG seg-
ment (i.e., m) is sufficiently large. The methylation pat-
tern X  is a binary random vector, taking a total of 2n 
possible values. The distribution of X  can be expressed 
as a function of pi and rij , 1 ≤ i �= j ≤ n . Denote the 
distribution of X  by {q0, q1, . . . , q2n−1} such that:

the ME of the random vector X is defined straightfor-
wardly from the Shannon entropy [23, 24].

Definition 1  The methylation entropy of an n-CpG 
segment is defined by

where  {q0, q1, . . . , q2n−1} form the probability mass func-
tion of the methylation states of the n contiguous CpG 
sites.

For convenience, base 2 is often chosen for the log-
arithm so that the ME can be evaluated in the unit of 
bits. In the absence of spatial correlation, i.e., assum-
ing independence between the CpG sites, an explicit 
expression of the ME can be derived in terms of the MP.

Corollary 1  If the CpG sites on an n-CpG segment are 
independent, then the methylation entropy 

where pi is the methylation probability of the ith CpG site.

Proof  Denote the methylation states of the n contigu-
ous CpG sites on the segment by a random vector X . By 
the assumption of independence between the CpG sites, 
the distribution of X can be seen as

q0 =P(X = [0, 0, · · · , 0, 0, 0]T ),

q1 =P(X = [0, 0, · · · , 0, 0, 1]T ),

q2 =P(X = [0, 0, · · · , 0, 1, 0]T ),

q3 =P(X = [0, 0, · · · , 0, 1, 1]T ),

.

.

.

q2n−1 =P(X = [1, 1, · · · , 1, 1, 1]T ),

(1)S = −

2n−1
∑

i=0

qi log(qi),

S = −

n
∑

i=1

[

(1− pi) log2(1− pi)+ pi log2(pi)
]

,
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where N = {1, 2, . . . , n} . Plugging in (2) to the ME 
definition (1), the expression of ME is simplified to 
S = −

∑n
i=1

[

(1− pi) log2(1− pi)+ pi log2(pi)
]

 . That is, 
under the assumption of independent CpG sites, S is sim-
ply the n-bit binary entropy function. □

Given independence between the CpG sites, for the 
special case of homogeneous methylation, i.e., pi = p 
for all 1 ≤ i ≤ n , Corollary 1 simplifies to

To illustrate the analytical relation in Corollary 1, for a 
simple example of 2-CpG segment, Fig. 2A shows the ME 
S as a function of the MPs p1 and p2 on the two CpG sites 
under the independence assumption. In particular, the 
relation between the ME and the MP for the homogene-
ous methylation case is shown in Fig.  2B, which is also 
the curve on the p1 = p2 plane in Fig. 2A.

(2)

q0 =P(X = [0, 0, · · · , 0, 0, 0]T ) =
�

i∈N

(1− pi),

q1 =P(X = [0, 0, · · · , 0, 0, 1]T ) =





�

i∈N\n

(1− pi)



pn,

q2 =P(X = [0, 0, · · · , 0, 1, 0]T ) =





�

i∈N\{n−1}

(1− pi)



pn−1,

q3 =P(X = [0, 0, · · · , 0, 1, 1]T ) =





�

i∈N\{n−1,n}

(1− pi)



pn−1pn,

.

.

.

q2n−1 =P(X = [1, 1, · · · , 1, 1, 1]T ) =
�

i∈N

pi,

S = −n
[

(1− p) log2(1− p)+ p log2(p)
]

.

Testing for spatial correlation
Based on the distribution of the methylation pattern 
on a CpG segment, we can check the existence of spa-
tial correlation by a Pearson’s χ2 goodness-of-fit test. 
Under the null hypothesis of no spatial correlation, i.e., 
H0 : rij = 0, ∀1 ≤ i �= j ≤ n or the correlation matrix R 
is an identity matrix, the distribution of the methyla-
tion pattern is provided in (2). Suppose that a total of m 
sequencing reads are collected in bisulfite sequencing 
to cover this segment, and denote the number of reads 
showing different methylation patterns correspond-
ing to {q0, q1, . . . , q2n−1} by O0,O1, . . . ,O2n−1 . These 
observed counts Oi together with their expected values 
Ei, 0 ≤ i ≤ 2n − 1 under H0 form the following contin-
gency table:

Expected Ei E0 = mq0 E1 = mq1 · · · E2n−1 = mq2n−1

Observed Oi O0 O1 · · · O2n−1

The chi-square test can be conducted for goodness-
of-fit based on a test statistic

with a degree of freedom 2n − 1− n (when 
0 < pi < 1, ∀1 ≤ i ≤ n , a total of n MP’s need to be esti-
mated, resulting in a loss of n degrees of freedom).

We performed a simulation study (Simulation 1) to 
evaluate this chi-square test of spatial correlation in 
terms of empirical type-I error and power. Details of 
the simulation procedure, evaluation results, and inter-
pretations are provided in the "Results" section.

χ2 =

2n−1
∑

i=0

(Oi − Ei)
2

Ei
,

p1 p2

S
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Fig. 2  Analytical relation between methylation entropy S and 
methylation probability p in a 2-CpG segment under independence 
assumption. A S as a function of p1 and p2 on the two CpG sites. B 
Relation between S and p when p1 = p2 =: p
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Relation between methylation entropy and methylation 
probability with spatial correlation taken into account
In the presence of spatial correlation, the ME is a func-
tion of both the MP and the spatial correlation, and 
intuitively, one would expect that for fixed MP, the ME 
behaves as a decreasing function of the spatial correla-
tion because larger correlation reduces the stochasticity 
inherent to the methylation pattern. Such a conjecture 
can be confirmed by calculating the distribution of the 
methylation pattern numerically, given the parameters 
p and R of the correlated Bernoulli distribution. For the 
convenience of demonstration, here we show the rela-
tion of the ME with p and R for the following two cases 
of homogeneous methylation: 

(1)	 ME vs. MP in a 2-CpG segment. Denote the meth-
ylation states of the two CpG sites by random vari-
ables X1 and X2 , respectively. Assuming homogene-
ous methylation, both X1 and X2 follow the same 
distribution of Bern(p) . Let cor(X1,X2) = r , the 
joint distribution of (X1,X2) can be obtained explic-
itly as: 

 and consequently, by Definition (1) the ME S can 
be written as a function of p and r. Figure 3A shows 
this analytical relation between S and p for a 2-CpG 
segment.

q0 =P(X1 = 0,X2 = 0) = rp(1− p)+ (1− p)2,

q1 =P(X1 = 0,X2 = 1) = p(1− p)(1− r),

q2 =P(X1 = 1,X2 = 0) = p(1− p)(1− r),

q3 =P(X1 = 1,X2 = 1) = rp(1− p)+ p2,

(2)	 ME vs. MP in an n-CpG segment, n > 2 . When 
n > 2 , the distribution of the methylation pattern 
cannot be directly derived from the pair-wise corre-
lations, yet the thresholding method in Emrich and 
Piedmonte [25] can be adopted to bypass this dif-
ficulty. The basic idea is to relate the correlated Ber-
noulli random vector to a latent multivariate nor-
mal (MVN) random vector by dichotomization in 
each dimension, determine the truncation parame-
ters and covariance matrix of the MVN distribution 
by using the given parameters of the correlated Ber-
noulli, and calculate the distribution of the methyla-
tion pattern from the joint cumulative distribution 
function (CDF) of the MVN. For the convenience of 
demonstration, Fig. 3B shows for a 4-CpG segment 
the analytical relation among ME, MP, and spatial 
correlation, under exchangeable correlation and 
homogeneous methylation assumptions.

The analytical relation between the parameters can be 
further validated by its analogous counterpart in terms 
of statistics. For this purpose, we performed a simulation 
study (Simulation 2) to illustrate the empirical relation 
between two statistics, the observed ME (OME) and the 
mean methylation level (MML), in the simulated data. 
Denote the simulated methylation data at each CpG seg-
ment by an m× n binary matrix x , that is, assuming a 
total of m sequencing reads are collected to fully cover 
the n-CpG segment. The OME statistic Ŝ is defined as:

0.0 0.2 0.4 0.6 0.8 1.0

0.
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0.
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p
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r=0
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0
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Fig. 3  Analytical relation between methylation entropy S and methylation probability p in an n-CpG segment, under different settings of spatial 
correlation parameter r. The 21 curves from top to bottom correspond to r = 0, 0.05, . . . , 0.95, 1 . For each r setting, S is shown as a function of p. A: 
n = 2 , under homogeneous methylation (i.e., p1 = p2 =: p ). B: n = 4 under exchangeable correlation (i.e., rij = r , 1 ≤ i �= j ≤ 4 ) and homogeneous 
methylation (i.e., pi = p, 1 ≤ i ≤ 4)
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The CpG-site-based ML (i.e., the fraction of methylated 
cytosines on each CpG site) is the sample mean statistic

and the MML statistic is simply the overall sample mean 
across the n-CpG sites. From elementary statistics, the 
OME and ML are the unbiased estimators of the param-
eters ME and MP, respectively (MML is also the unbiased 
estimator of the homogeneous MP). Details of the simu-
lation procedure, results, and interpretations are pro-
vided in the "Results" section.

Real data application
Guided by the theoretical results presented in previ-
ous sections as well as the two simulation studies, we 
applied the proposed method to analyze a published 
dataset of mouse brain methylome [26]. This dataset 
includes MethylC-Seq data on mouse frontal cortex dur-
ing early postnatal, juvenile, adolescent, and adult stages. 
Our analysis contains three steps: (1) for a given sample, 
extract all 4-CpG segments under a prespecified depth, 
(2) calculate the OME and MML statistics for each seg-
ment, and draw a scatter plot to show the relation of 
OME vs. MML, and (3) mark CpG segments which 
exhibit low OME, non-extreme MML, and strong spatial 
correlation. As elucidated, the low OME and strong spa-
tial correlation in these segments suggest “bi-modality” 
in the distribution of methylation pattern, which indi-
cates strong epigenetic control mechanism and can be a 
potential signal of CSM arising from a mixture of two cell 
types [16]. We will call such bi-modal distributed CpG 
segments the bipolar methylated loci.

There are two specific aims, association validation and 
dynamics demonstration, for this real data application. 
The first one is to check whether the identified bipo-
lar methylated loci are associated with DMRs. For this 
purpose, we choose two samples that contain bisulfite 
sequencing data enriched with neuron and glia cells, 
respectively. The sequencing reads from these two sam-
ples are pooled together to form data of a mixture of two 
cell types, and bipolar methylated loci are then identi-
fied from this mixed cell population. Meanwhile, by 
comparing the mean methylation levels of the CpG seg-
ments obtained from the two samples separately, DMRs 
are detected between neuron and glia cells. We then 
check the association (or overlap) between the identified 
bipolar methylated loci and DMRs to validate whether 
the proposed method helps discover CSM. Second, for 

Ŝ = −

2n−1
∑

i=0

Oi

m
log

(

Oi

m

)

.

x̄j =
1

m

m
∑

i=1

xij , 1 ≤ j ≤ n,

dynamics demonstration, we would like to see how the 
bipolar methylated loci change over time. This is done by 
choosing two samples from different stages (e.g., 2-week 
and 4-week) of the mouse frontal cortex data, and com-
paring the corresponding bipolar methylated loci iden-
tified by Steps (1)–(4) above. This comparison sheds 
light on the dynamics of bipolar methylated loci during 
mouse brain development. Details of the real data analy-
sis procedure, results, and discussions are provided in the 
"Results" section.

Results
Simulation 1 to evaluate the chi‑square test for spatial 
correlation
Simulation 1 was conducted on a hypothetical n-CpG 
segment with 15 combinatorial settings on the number 
of CpG sites n = 2, 3, 4 and the number of sequencing 
reads m = 20, 40, 60, 80, 100 . Under the null hypothesis, 
the depth-m methylation data xj , 1 ≤ j ≤ n on the jth 
CpG site were generated by sampling from Bernoulli 
distribution, independently of the other CpG sites. 
To avoid severe bias in the observed methylation pat-
tern distribution {Oi, 0 ≤ i ≤ 2n − 1} due to too low/
high MP, the success probability of the Bernoulli was 
limited to random samples drawn from Unif(0.3, 0.7). 
The empirical type-I error results at nominal level 0.05 
are reported in Table  1, based on 10,000 replicates. It 
can be seen that, for almost all settings of m and n, the 
empirical type-I error is not significantly different from 
the nominal, indicating that the proposed chi-square 
test is correctly calibrated.

The simulation under the alternative involved gener-
ating samples from a correlated Bernoulli random vec-
tor, which was accomplished by using the thresholding 
method [25]. Due to the constraint in the parameters 
of the correlated Bernoulli distribution [21, 22], we 
limited the spatial correlation to two commonly used 
structures that are compatible with nonhomogene-
ous methylation: (i) exchangeable, i.e., rij = r , and (ii) 
first order autoregressive, or AR(1), i.e., rij = r|i−j| , for 
1 ≤ i �= j ≤ n . The basic correlation parameter r was set 

Table 1  Empirical type-I error of chi-square test for spatial 
correlation, at level 0.05

The empirical type-I error is calculated based on 10,000 simulated replicates 
under the null hypothesis. The large sample 95% CI for the type-I error at level 
0.05 is [0.0457, 0.0543]

m = 20 m = 40 m = 60 m = 80 m = 100

n = 2 0.0489 0.0565 0.0505 0.0508 0.0503

n = 3 0.0459 0.0467 0.0497 0.0475 0.0504

n = 4 0.0455 0.0472 0.0502 0.0472 0.0520
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to two different values 0.3 and 0.4. All other parame-
ters used the same setting as in the simulation under 
the null hypothesis. This simulation was repeated 1000 
times, and the empirical power results are reported in 
Table  2. From this table we can see several clear pat-
terns, showing how the empirical power is affected by 
each single parameter when all other parameters are 
fixed: 

	(i)	 The empirical power increases with the number 
of sequencing reads m. This is an obvious result 
because m essentially stands for the sample size.

	(ii)	 The empirical power increases with the number of 
CpG sites n. In other words, spatial correlation, if 
exists, tends to be detected more easily in longer 
CpG segments than in shorter CpG segments. 
Intuitively, this is expected since the correlation 
effect accumulates along the sites of the CpG seg-
ment.

	(iii)	 Larger r results in higher empirical power, as the 
basic correlation parameter r controls directly the 
magnitude of the effect.

	(iv)	 Exchangeable correlation yields higher power than 
AR(1) correlation. This is a simple consequence of 
(iii).

Simulation 2 to assess the relation between observed 
methylation entropy and mean methylation level
The purpose of this simulation is to demonstrate the 
empirical relation between the OME and the MML, as 
an analogy to the analytical relation between the ME and 
the MP. The simulation involved a total of 500 hypotheti-
cal 4-CpG segments, on which we generated sequencing 
reads at different sequencing depth m = 20, 40, 60, 80 , 

and 100. It is worth noting that, since we focus on 4-CpG 
segments in the simulation (also in real data application), 
it is not appropriate to consider sequencing depth lower 
than 24 because the insufficient sample size will result in 
large deviation of the OME and MML from the corre-
sponding parameters ME and MP. For the convenience of 
demonstration, the simulation was tailoring to homoge-
neous methylation and exchangeable spatial correlation 
with p and r both drawn from Unif(0, 1) for each CpG 
segment. All other parameters used the same setting 
as in Simulation 1. Among the 500 CpG segments, we 
assumed that 10% had no spatial correlation, and the rest 
exhibited exchangeable correlation. The OME and MML 
were calculated for each segment and their relation at dif-
ferent sequencing depth is shown by the scatter plots in 
Fig.  4. In these scatter plots, each dot/circle represents 
a 4-CpG segment. The 50 CpG segments with no spatial 
correlation are highlighted with red color, and the blue 
circles and black dots indicate whether spatial correla-
tion is detected in the CpG segment by the proposed chi-
square test (blue: p-value ≥ 0.05 ; black: p-value < 0.05 ). 
We see that, for all m values in {20, 40, 60, 80, 100} , the 
50 CpG segments with no spatial correlation are success-
fully detected by the test, showing that the type-I error 
is well controlled. For comparison, the analytical relation 
between the ME and the MP is overlaid to each scatter 
plot as solid lines. The blue line at the top corresponds 
to r = 0 , i.e., no spatial correlation exists, and the 10 
black lines are arranged from top to bottom according 
to r = 0.1, 0.2, . . . , 1 . It can be seen that, as the sequenc-
ing depth increases from 20 to 100, the empirical rela-
tion of OME vs. MML approaches closer and closer to 
the analytical relation of ME vs. MP, and the chi-square 
test gains more power in detecting CpG segments with 

Table 2  Empirical power of chi-square test for spatial correlation, at level 0.05

The empirical power is calculated based on 1000 simulated replicates under the alternative hypothesis
a  EX exchangeable, AR(1) first order autoregressive

m = 20 m = 40 m = 60 m = 80 m = 100

EXa n = 2 0.254 0.497 0.671 0.774 0.847

r = 0.3 n = 3 0.389 0.706 0.885 0.952 0.993

n = 4 0.492 0.810 0.950 0.991 0.998

n = 2 0.403 0.758 0.898 0.969 0.984

r = 0.4 n = 3 0.670 0.937 0.996 0.997 1.000

n = 4 0.772 0.973 0.999 1.000 1.000

AR(1)a n = 2 0.254 0.497 0.671 0.774 0.847

r = 0.3 n = 3 0.274 0.524 0.773 0.881 0.958

n = 4 0.300 0.565 0.761 0.915 0.963

n = 2 0.403 0.758 0.898 0.969 0.984

r = 0.4 n = 3 0.505 0.849 0.973 0.994 1.000

n = 4 0.535 0.873 0.986 1.000 0.999
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spatial correlation (the number of significant p-values at 
m = 20, 40, 60, 80, 100 are 306, 358, 373, 391, and 383, in 
contrast to the truth 450). In addition, when the sequenc-
ing depth is low, e.g., m = 10 or 20, due to limited sample 
size, both the OME and the MML could deviate from the 
ME and the MP. The effect of small sample size is mainly 
revealed in the underestimated OME as some methyla-
tion patterns (among the total 16) cannot be observed 
with low sequencing depth. This can be observed clearly 
from Fig. 4A (for m = 20 ) and Fig. 4B (for m = 40 ). The 
OME vs. MML relation on the CpG segments which were 

tested to have no spatial correlation (blue circles) devi-
ates downwards from the theoretical ME vs. MP rela-
tion (blue line), showing underestimated OME in low 
sequencing depth.

Application to mouse brain methylome
Mouse brain methylome data were downloaded from the 
NCBI Gene Expression Omnibus (GEO). For the first 
specific aim, association validation, we used the proposed 
method to analyze MethylC-Seq data of two samples, 
SRR921832: NeuN+ (neuron) and SRR921839: NeuN− 
(glia), from 6-week female mouse frontal cortex. These 
data were generated from populations of nuclei obtained 
by fluorescence-activated cell sorting. A total of 1012 and 
976 4-CpG segments with at least 20× sequencing depth 
were extracted from the neuron and glia samples, respec-
tively, among which there were 966 in common. Based on 
pooled sequencing reads of the two samples on the com-
mon CpG segments, we obtained 688 bipolar methylated 
loci under condition “MML ∈ (0.2, 0.8) ” and “OME < the 
theoretical value under spatial correlation r = 0.6 ”. On 
the other hand, among the 966 common CpG segments, 
191 were detected to be DMRs by comparing the MML 
of the two samples via a standard chi-square test. The 
association between the bipolar methylated loci and the 
DMRs was evaluated by a Fisher’s exact test based on the 
following 2× 2 contingency table:

Bipolar Non-bipolar Total

DMR 161 30 191

Non-DMR 527 248 775

Total 688 278 966

The p-value for this association test is 4.578× 10−6 , 
indicating the existence of strong association, in other 
words, the bipolar methylated loci are likely (with odds 
ratio: 2.52) to be DMRs. In addition, the overlap among 
the bipolar methylated loci and the DMRs, together with 
the bipolar methylated loci identified by using the neu-
ron and glia samples separately is shown in a Venn dia-
gram in Fig. 5A. Out of the 191 DMRs, 161 (84.3%) were 
identified as bipolar methylated loci. We note that, the 
OME threshold r = 0.6 can be adjusted high or low to 
allow more stringent or lenient constraint for identifying 
bipolar methylated loci. For example, if we set r = 0.7 , 
a total of 478 bipolar methylated loci were detected 
among which 119 were overlapped with DMRs (p-value 
for association: 9.875× 10−5 ), whereas setting a lower 
threshold r = 0.55 resulted in 705 bipolar methylated 
loci with 166 overlapped with DMRs (p-value for asso-
ciation: 4.464 × 10−7 ). Figure  5B shows the gene ontol-
ogy (GO) enrichment analysis result by using DAVID 
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Fig. 4  Simulation 2: empirical relation of observed methylation 
entropy (OME) vs. mean methylation level (MML) in 500 simulated 
4-CpG segments, under different sequencing depth m. Each dot/
circle represents a CpG segment. Red color highlights the 50 CpG 
segments with no spatial correlation. Blue circles and black dots 
indicate the absence and presence of spatial correlation in the CpG 
segment by using the proposed chi-square test. For comparison, the 
analytical relation between methylation entropy and methylation 
probability is shown in solid lines, with blue curve standing for 
no spatial correlation ( r = 0 ) and 10 black curves from top to 
bottom corresponding to spatial correlations from weak to strong 
( r = 0.1, 0.2, . . . , 1 ). A m = 20 . B m = 40 . C m = 60 . D m = 80 . E 
m = 100
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bioinformatics resources tool [27]. Functional relevance 
was checked for both genes containing bipolar methyl-
ated loci in neuron and glia samples, and genes contain-
ing DMRs. Gene structure annotations were retrieved 
from Ensembl genome browser, and gene region was 
defined to be from transcription start site to transcrip-
tion end site.

Next, to demonstrate the dynamics of the identi-
fied bipolar methylated loci during two stages of mouse 
brain development, we applied the proposed method on 

MethylC-Seq data of two samples, SRR921694 in 2-week 
and SRR921776 in 4-week, from mouse frontal cortex. A 
total of 1254 and 1200 4-CpG segments with at least 20× 
sequencing depth were extracted from the two samples, 
respectively. The MML and OME statistics were then cal-
culated for these CpG segment, and shown in Fig. 6 for 
the two stages. By using condition “MML ∈ (0.2, 0.8) ” 
and “OME < the theoretical value under strong spatial 
correlation r = 0.7 ”, we identified 186 and 242 CpG seg-
ments as bipolar methylated loci (shown as green dots in 

Fig. 5  Real data application: validation of association between bipolar methylated loci and differentially methylated regions (DMRs) in neuron 
and glia samples in mouse brain methylome. A Venn diagram showing the overlap among a bipolar methylated loci and b DMRs, together with c 
bipolar methylated loci identified by using neuron samples and d bipolar methylated loci identified by using glia samples. B Gene ontology (GO) 
enrichment analysis of the genes containing bipolar methylated loci and DMRs. p-values for GO enrichment were adjusted by Bonferroni correction
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Fig. 6  Real data application: demonstration of dynamics of bipolar methylated loci from 2-week to 4-week stages in mouse brain methylome. 
Each dot represents the empirical relation of methylation entropy (OME) vs. mean methylation level (MML) in a CpG segment with at least 20× 
sequencing depth. Green dots show the identified bipolar methylated loci. Blue and black dots indicate respectively the absence and presence of 
spatial correlation decided by the proposed chi-square test. For comparison, the analytical relation between methylation entropy and methylation 
probability is shown in solid lines, with blue curve standing for no spatial correlation ( r = 0 ) and 10 black curves from top to bottom corresponding 
to spatial correlations from weak to strong ( r = 0.1, 0.2, . . . , 1 ). A OME vs. MML in the 2-week sample. B OME vs. MML in the 4-week sample
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Fig. 6) in the 2 and 4-week samples, respectively. The blue 
and black dots in Fig. 6 indicate the presence and absence 
of spatial correlation decided by the proposed chi-square 
test. For comparison, the analytical relation between the 
ME and the MP was added to the scatter plots as solid 
lines. Comparison between the green dots in Fig.  6A 
with those in Fig. 6B helps reveal the dynamics of bipolar 
methylated loci from 2 to 4-week stages in mouse front 
cortex. To answer the question “is there a significant 
change in the proportion of bipolar methylated loci from 
the 2-week to 4-week mouse front cortex” or “is bipolar 
methylation independent of the two development stages, 
2-week and 4-week, of the mouse front cortex”, a stand-
ard homogeneity/independence test can be conducted 
based on the 2× 2 contingency table calculated from the 
two samples:

Bipolar Non-bipolar Total

2-week 186 1068 1254

4-week 242 958 1200

The corresponding Fisher’s exact test p-value (two-
sided) is 5× 10−4 , showing that bipolar methylation does 
depend on the two development stages of the mouse 
front cortex. We therefore conclude that, the proportion 
of bipolar methylated loci in the 2-week mouse front cor-
tex is significantly lower (with odds ratio: 0.69) than that 
in the 4-week mouse front cortex. In other words, from 
the 2-week to the 4-week development stage, the mouse 
front cortex exhibits a decrease of stochasticity in meth-
ylation pattern, which confirms previous findings in lit-
erature [28].

Discussion
In this study, we illuminated the analytical relation of 
methylation entropy vs. methylation probability in a seg-
ment of independent or spatially correlated CpG sites. 
We proposed a chi-square test to check the existence of 
spatial correlation, and explored how spatial correlation, 
if exists, impacts with the relation of ME vs. MP. Simula-
tion studies were performed to evaluate the type-I error 
and power of the proposed test, and assess the empiri-
cal relation between the two statistics, the OME and the 
MML, in companion with the relation between their 
theoretical counterparts. By analyzing real data from the 
mouse brain methylome, we identified CpG segments 
exhibiting bipolar methylation which were shown to be 
associated with DMRs detected between neuron and glia 
cells. We also examined the dynamics of bipolar meth-
ylated loci in two developmental stages of the mouse 
front cortex. Compared to other sophisticated methods 
developed in literature [13, 14, 16], the proposed method 

provides a simple but effective way to detect CpG seg-
ments under strong epigenetic control (i.e., with bipolar 
methylation). Findings from this study shed light on the 
identification of cell-type specific genes/pathways based 
on methylation data from a mixed cell population.

One possible extension of the proposed method for 
testing spatial correlation is to detect CpG segments 
with specific correlation structure. For example, instead 
of testing whether spatial correlation exists in each CpG 
segment, one may be interested in finding out which CpG 
segments have exchangeable correlation with r = 0.7 . In 
this case, the chi-square test can be easily adjusted by 
updating the null hypothesis, that is, by replacing the 
joint distribution expression (2) under no spatial correla-
tion assumption with a version under the exchangeable 
correlation assumption. The updated expression of the 
joint distribution of methylation pattern can be obtained 
numerically by using the thresholding method.

Our derivation of the ME expression as a function 
of the MP under spatial correlation borrows strength 
from the thresholding method in Emrich and Pied-
monte. As a gold-standard approach, this method is 
flexible to allow arbitrary correlation structure, how-
ever, using this method to calculate the joint distribu-
tion of methylation pattern involves the solution of 
non-linear equations via numerical integration, which 
appears to be computationally inefficient. Other meth-
ods may be used as alternatives for calculating the joint 
distribution or generating random samples of a cor-
related Bernoulli random vector. For example, Park 
et  al. dichotomizes partial sums of independent Pois-
son variables [29], Qaqish employs a conditional linear 
family of distributions [30], Yang and Chaganty adopts 
Markov chains and multivariate probit models [31], 
Haynes et al. and Shults develop multinomial sampling 
[32, 33], Jiang et  al. attains three commonly studied 
correlation structures by combining Bernoulli random 
variables via computationally efficient algorithms [34].

Another important issue is the choice of n, i.e., the 
number of sites in the CpG segments. In practice, we 
usually set n = 4 . One may adopt a larger n for data with 
longer sequencing reads. However, there are at least two 
drawbacks for choosing a large n: (1) it will filter out a 
large number of CpG segments which do not contain 
sequencing reads with that many contiguous CpG sites, 
and (2) it will result in a remarkable decrease in m, that 
is, with more CpG sites required in the sequencing 
reads, fewer sequencing reads will be available in each 
CpG segment. As an example, in our real data analy-
sis based on sample SRR921694 under depth 20× , for 
n = 4 , the number of CpG segments is 1254 and the 
average number of sequencing reads of the CpG seg-
ments m̄ = 59.62 , whereas for n = 6 , the number of CpG 
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segments decreases to 681 and m̄ = 56.99 , and for n = 8 , 
the number of CpG segments further drops to 464 and 
m̄ = 47.17 . Moreover, for large n, the calculation of OME 
will deviate away from its theoretical value ME because 
some methylation patterns cannot be observed due to 
limited number of sequencing reads m but exponentially 
increased number (i.e., 2n ) of possible methylation pat-
terns. In general, given the sample size m is sufficiently 
large, i.e., enough sequencing depth is guaranteed for the 
CpG segment under consideration, the unbiased statis-
tics OME and MML are able to estimate the ME and MP 
as accurately as possible. Hence the relation between the 
OME and MML serves as a good approximation to that 
between the ME and MP. With limited sequencing depth 
in real data, the empirical relation of OME vs. MML 
could be seriously distorted by the nonnegligible esti-
mation error. The investigation of such an issue may be 
used to guide the quality control procedure in bisulfite 
sequencing, i.e., to select CpG segments covered by 
enough sequencing depth, which is worth further explo-
ration in future work.
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