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Abstract
Background The DNA methylation-based epigenetic clocks are increasingly recognized for their precision in 
predicting aging and its health implications. Although prior research has identified connections between accelerated 
epigenetic aging and multiple sclerosis, the chronological and causative aspects of these relationships are yet to be 
elucidated. Our research seeks to clarify these potential causal links through a bidirectional Mendelian randomization 
study.

Methods This analysis employed statistics approaches from genome-wide association studies related to various 
epigenetic clocks (GrimAge, HannumAge, PhenoAge, and HorvathAge) and multiple sclerosis, utilizing robust 
instrumental variables from the Edinburgh DataShare (n = 34,710) and the International Multiple Sclerosis Genetics 
Consortium (including 24,091 controls and 14,498 cases). We applied the inverse-variance weighted approach as our 
main method for Mendelian randomization, with additional sensitivity analyses to explore underlying heterogeneity 
and pleiotropy.

Results Using summary-based Mendelian randomization, we found that HannumAge was associated with multiple 
sclerosis (OR = 1.071, 95%CI:1.006–1.140, p = 0.033, by inverse-variance weighted). The results suggest that an 
increase in epigenetic age acceleration of HannumAge promotes the risk of multiple sclerosis. In reverse Mendelian 
randomization analysis, no evidence of a clear causal association of multiple sclerosis on epigenetic age acceleration 
was identified.

Conclusions Our Mendelian randomization analysis revealed that epigenetic age acceleration of HannumAge was 
causally associated with multiple sclerosis, and provided novel insights for further mechanistic and clinical studies of 
epigenetic age acceleration-mediated multiple sclerosis.
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Introduction
Multiple sclerosis (MS) is a common chronic autoim-
mune disorder that impacts the central nervous sys-
tem, marked by neurodegeneration, demyelination, 
and inflammation [1]. It primarily impacts young adults 
between 20 and 40 years old, with a higher incidence in 
women, who are twice as likely as men to develop the 
condition [2]. MS is categorized into four main types: 
progressive-relapsing MS, relapsing-remitting MS, pri-
mary progressive MS, and secondary progressive MS. 
Clinical manifestations are varied and can include limb 
weakness, paresthesias, optic neuritis, and ataxia [3]. 
While the exact cause of MS remains unknown, it is rec-
ognized that a combination of environmental and genetic 
factors increases the susceptibility to the disease [4]. 
Given that MS is a leading cause of neurological issues in 
young adults and its incidence is increasing worldwide, it 
is crucial to identify risk factors accurately.

In recent years, epigenetic age has been established as a 
benchmark for assessing biological aging [5, 6]. Utilizing 
DNA methylation profiles from various genomic sites, 
epigenetic clocks have proven more effective in predict-
ing both chronological age and mortality than traditional 
markers like telomere length and modern omics-based 
biomarkers [5]. Epigenetic age acceleration (EAA), the 
variance between epigenetic and chronological age, is 
closely associated with a spectrum of age-related diseases 
and longevity differences among ethnic groups [6, 7]. 
Several EAA metrics have been devised to capture dis-
tinct facets of aging, including intrinsic EAA [8], which 
indicates aging independent of blood cell composition, 
HannumAge acceleration [9] associated with extrin-
sic aging factors, and advanced predictors like Pheno-
Age acceleration [10] and GrimAge acceleration [11], 
designed to more accurately forecast age-related health 
outcomes and mortality. In research by Maltby et al., 
using DNA methylation data from various studies, MS 
patients were found to have higher EAA levels compared 
to controls [12]. Conversely, another study showed lower 
EAA in MS patients’ brain tissue compared to healthy 
individuals [13]. The links between MS and EAA, how-
ever, remain observational and yield conflicting results, 
complicated by potential confounding factors and reverse 
causality. This makes it challenging to establish causality 
through conventional epidemiological methods. There-
fore, a dedicated exploration into the causal dynamics 
between MS and EAA is essential.

Mendelian randomization (MR) employs genetic varia-
tions to explore if correlations between risk factors and 
outcomes suggest a causal relationship. This method 

capitalizes on the random distribution of genetic vari-
ants during meiosis, ensuring that these variations are 
randomly allocated at birth. MR assesses whether the 
presence of a risk factor is affected by inherited genetic 
variations or spontaneous mutations [14]. It utilizes 
an instrumental variable (IV) to deepen the analysis of 
causal links between variables [15]. In this study, we con-
ducted a bidirectional two-sample MR analysis to rigor-
ously probe the causal connections between EAA and the 
risk of developing MS.

Materials and methods
Study design
MR analysis is grounded in three fundamental assump-
tions: (1) the assumption of correlation, which requires a 
robust correlation with exposure; (2) the assumption of 
exclusivity. There is no direct association with the out-
come; (3) the assumption of independence. There is no 
influence on confounding factors [16, 17]. Figure 1 shows 
a schematic diagram of the MR study of EAA and MS.

Data sources
We acquired genetic instruments for four epigenetic 
clocks-GrimAge, HannumAge, PhenoAge, and Hor-
vathAge-from a GWAS meta-analysis involving 28 
cohorts with 34,710 European ancestry participants 
[18]. For multiple sclerosis (MS), we used GWAS data 
from the International Multiple Sclerosis Genetics Con-
sortium (IMSGC), which includes data on 115,803 indi-
viduals of European descent, featuring 47,429 MS cases 
and 68,374 controls [19]. Additionally, the availability of 
the MS GWAS data was confirmed on the Open GWAS 
project.

Selection of instrumental variables
For a genetic variation to qualify as an IV in our study, it 
had to meet the following criteria: (1) The single-nucleo-
tide polymorphisms (SNPs) exhibit a strong association 
with epigenetic clocks; (2) The SNPs are free from con-
founders that influence epigenetic age acceleration (EAA) 
effects on MS; (3) The SNPs do not have a direct asso-
ciation with MS but influence the disease through the 
EAA pathway. We initially selected SNPs strongly linked 
to EAA using a significance cutoff of P < 5 × 10^-8. To 
ensure that our IVs were independent, we excluded SNPs 
in linkage disequilibrium (LD) with others (r^2 < 0.001 
within a 10,000  kb clumping window). The strength of 
the IVs was assessed by calculating their F-values [20]. 
The proportion of trait variance attributable to genetic 
instruments (R^2) is determined using the formula: 
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R^2 = 2×MAF×(1-MAF)×Beta, where MAF is the minor 
allele frequency, Beta indicates the effect size, SE refers 
to the standard error, N represents the sample size, and 
k denotes the number of IVs [21]. The F statistic quanti-
fies the strength of the association between single-nucle-
otide polymorphisms (SNPs) and EAA. It is computed 
following the formula F=[(n-k-1)/k]/[R^2/(1-R^2)]. IVs 
that yield F-values greater than 10 are considered to 
have strong instrumental strength, which helps reduce 
potential biases in MR analysis [22]. To confirm that the 
selected IVs met the independence hypothesis, we used 
PhenoScanner  (   h t  t p :  / / w w  w .  p h e n o s c a n n e r . m e d s c h l . c a m . a 
c . u k /     ) to check if the chosen SNPs were associated with 
other phenotypes [23]. The analysis revealed that none of 
the SNPs showed significant associations with any other 
factors [24, 25]. 

MR analysis
The two-sample MR approach employed genome-wide 
significant IVs to ascertain the causal effects of expo-
sures and risk factors on specific outcomes. To achieve 
robust causal inference, we utilized various analyti-
cal methods: Simple Mode (SMod), MR Egger (MRE), 
inverse-variance weighted (IVW), Weighted Mode 
(WMod), and Weighted Median (WMed). The IVW 
method, especially with multiplicative random effects, is 

considered the most effective for estimating causal effects 
and allows for the accounting of heterogeneity in these 
estimates [26]. It is crucial with IVW to verify that the 
SNPs are free from pleiotropic influences, which could 
otherwise introduce significant bias. The MRE method, 
incorporating an intercept term, helps identify potential 
breaches in IV assumptions, though it may increase type 
I error rates [27]. Contrary to the IVW method, the MRE 
approach incorporates an intercept term in its analysis. 
The Weighted Median method, by analyzing data from 
potentially invalid IVs, still offers reliable estimates if at 
least 50% of the genetic information comes from valid 
instruments [28]. Meanwhile, Weighted Mode methods, 
although less effective in detecting causal links, tend to 
introduce less bias into the analysis [29]. Considering the 
multiple tests in our study, Benjamini-Hochberg method 
was applied to adjust the p value to reduce the false dis-
covery rate [30]. 

Heterogeneity, pleiotropy, and sensitivity assessment
Cochran’s Q test was used to examine the heterogene-
ity across individual genetic variants within both MRE 
and IVW methods [31, 32]. P-value > 0.05 indicated the 
heterogeneity absence. For assessing directional plei-
otropy, we employed the MRE intercept test, consider-
ing pleiotropic effects negligible if the intercept did not 

Fig. 1 The process of present Mendelian randomization (MR) analyses is shown in flow chart
Assumption 1: The instrumental variables (IVs) selected for this study should demonstrate a significant association with epigenetic age. Assumption 2: The 
IVs chosen for present study are required to have no significant associations with other potential confounding factors. Assumption 3: The IVs utilized in 
present study do not have any independent causal pathways leading to multiple sclerosis other than through epigenetic age acceleration
Abbreviations: IV, instrumental variable; SNPs, single-nucleotide polymorphisms; MR, Mendelian randomization

 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/


Page 4 of 10Liu et al. Epigenetics & Chromatin            (2025) 18:7 

significantly differ from zero (p > 0.05) [33]. The MR-Plei-
otropy Residual Sum and Outlier (MR-PRESSO) global 
test was also applied to detect horizontal pleiotropy and 
pinpoint outlier variants [34]. To evaluate the robust-
ness of our findings, we conducted leave-one-out analy-
ses using MRE and IVW methods, sequentially removing 
individual SNPs to see their impact on the overall results. 
Further sensitivity analyses were performed with both 
IVW and MR-Egger methods, ensuring the MRE esti-
mate remained unbiased in the absence of pleiotropic 
effects linked to the genetic instruments.

Statistical analysis
Two-sample MR analysis was carried out using the pack-
age ‘TwoSampleMR’, and the MR-PRESSO test was con-
ducted using the package ‘MRPRESSO’. All statistical 
evaluations were performed in R version 4.3.3. To control 
for multiple testing, we implemented the false discovery 
rate (FDR) method. Statistically significant differences 
were considered when the FDR-adjusted q-value fell 
below 0.05.

Results
Identification of IVs for MR analysis
We identified 7, 11, 24, and 9 IVs from GWAS data cor-
responding to GrimAge, PhenoAge, HorvathAge, and 
HannumAge, respectively. Notably, the F statistics for 
all selected SNPs exceeded 496, with ranges as fol-
lows: GrimAge (977–1836), PhenoAge (859–4527), 

HorvathAge (579–4610), and HannumAge (496–1561) 
(Supplementary Table 1). In contrast, 95 IVs were iden-
tified from the GWAS data for MS. The selected SNPs 
exhibited F statistics greater than 25, with a range of 25 
to 1269 (Supplementary Table 2). In MR, the F-statistic 
serves as the criterion for assessing the strength of IVs, 
with an F value exceeding 10 indicating robust instru-
ments. In our analysis, the strength of the instruments 
was substantial, with F-statistics in bidirectional MR 
analyses ranging from 25 to 4610. As a result, we detected 
no signs of weak IV bias, indicating that these IVs yield 
dependable estimates of the causal impact of exposure on 
the outcome.

Bidirectional mendelian randomization results
In the summary-level MR analysis, significant associa-
tions were identified between genetically predicted EAA 
and MS. As depicted in Fig.  2, genetically predicted 
EAA of HannumAge (OR = 1.071, 95%CI: 1.006–1.140, 
p = 0.033, by IVW) was linked to an increased risk of MS 
positively. After applying Benjamini-Hochberg false dis-
covery rate correction using the Benjamini-Hochberg 
procedure, the association remains robust and statisti-
cally significant. Conversely, no causal associations were 
observed between other epigenetic aging-related traits 
and MS (OR = 0,999, 95%CI: 0.969–1.030, p = 0.952, by 
IVW for GrimAge; OR = 1.000, 95%CI: 0.962–1.040, 
p = 0.998, by IVW for PhenoAge; OR = 1.004, 95%CI: 
0.943–1.068, p = 0.907, by IVW for HorvathAge). A 

Fig. 2 Forest plot of estimates for effects of epigenetic age acceleration on multiple sclerosis in Mendelian randomization. Estimates were obtained using 
the IVW, MRE, WMed, WMod and SMod
Abbreviations: IVW, inverse variance weighted. MRE, MR Egger. WMed, Weighted Median. WMod, Weighted Mode. SMod, Simple Mode. CI, confidence 
interval. OR, odds ratio. SNPs, single-nucleotide polymorphisms
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detailed examination of the MR analysis regarding the 
causal relationship between EAA and MS is shown 
in Supplementary Table 3. Figure  3 exhibits the scat-
ter plots of the five methods. The trend lines suggested 
that increases in genetically predicted EAA of Hannum-
Age correlate with a higher risk of MS. Conversely, we 
conducted an MR analysis with MS as the exposure to 
investigate potential reverse causality effects on EAA. 
As depicted in Fig.  4, genetically predicted MS was 
not associated with any epigenetic aging-related traits 
(OR = 0.921, 95% CI: 0.805–1.053, p = 0.226, by IVW for 
GrimAge; OR = 1.024, 95% CI: 0.958–1.096, p = 0.483, by 
IVW for PhenoAge; OR = 1.057, 95% CI: 0.998–1.119, 
p = 0.058, by IVW for HorvathAge; OR = 1.054, 95% CI: 
0.999–1.113, p = 0.054, by IVW for HannumAge). The 
details of using the MR method analyzing the causal rela-
tionship of the MS on EAA are shown in Supplementary 

Table 4. The scatter plots of the five methods are pre-
sented in Fig. 5.

Sensitivity analysis
We conducted sensitivity analyses using Cochran’s Q 
statistics combined with IVW and MRE methods to 
evaluate heterogeneity. The analyses identified sig-
nificant heterogeneity between MS and two epigenetic 
clocks-PhenoAge (Q = 107.422, P = 0.043) and Hannum-
Age (Q = 116.593, P = 0.011), as detailed in Table 1. Given 
this heterogeneity, we proceeded with the IVW method 
using a multiplicative random-effects model for fur-
ther MR analysis. Additionally, the MRE intercept and 
the MR-PRESSO global test confirmed that the absence 
of directional horizontal pleiotropy is statistically sig-
nificant (Table  1). To further validate our findings, we 
implemented a “leave-one-out” analysis using the IVW 
method. In this analysis, each SNP was sequentially 

Fig. 3 Scatter plots of epigenetic age acceleration and multiple sclerosis. GrimAge (A), PhenoAge (B), HorvathAge (C) and HannumAge (D) as exposure 
and MS as outcome
Abbreviations: MR, Mendelian randomization; SNP, single-nucleotide polymorphism
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removed, and the impact on the remaining dataset was 
assessed (as shown in Supplementary Fig. 1 and Fig. 2). 
This test revealed that no individual SNP significantly 
altered the outcome, underscoring the robustness and 
reliability of our results.

Discussion
This is the first bidirectional causal relationship investi-
gation between EAA and MS through a large-scale MR 
study, to the best of our knowledge. Our research reveals 
that an increased genetically predicted HannumAge is 
associated with a higher risk of MS. Conversely, we found 
no evidence supporting a causal effect of MS on any 
epigenetic aging-related traits. This suggests that EAA, 
specifically HannumAge, may be a risk factor for the 
development of MS.

Chronological age is calculated based on an individual’s 
birthdate, while biological age is assessed through bio-
markers that gauge the aging process in various organs 
and tissues. Research has shown that biological age 
can diverge significantly among individuals of the same 
chronological age [35, 36]. DNA methylation at cytosine-
phosphate-guanine (CpG) sites is a primary epigenetic 
marker that changes with age and can be measured in tis-
sues and blood. The methylation percentage at each CpG 
site helps develop an “epigenetic clock,” which closely 
aligns with chronological age [6, 10]. Different epigen-
etic clock algorithms can be derived from methylation 
data across specific cell or tissue types, tailored to detect 

specific physiological changes or outcomes. The dispar-
ity between epigenetic and chronological ages can indi-
cate whether individuals are biologically older or younger 
than their chronological age. Accelerated epigenetic 
aging is linked to a higher risk of age-related ailments, 
including neurodegenerative diseases like Parkinson’s 
and Alzheimer’s disease, cardiovascular diseases, and 
diabetes, as well as increased chances of early death [7, 
37]. 

Previous research has established a link between DNA 
methylation and MS. Hypomethylation in genes, particu-
larly those related to lymphocyte-mediated leukocyte 
and immunity pathways, has been shown to contribute 
to the immune-mediated pathology observed in MS [38]. 
Additionally, DNA methylation plays a role in modulat-
ing the immunogenicity of autoantigens in MS brain [39, 
40]. Furthermore, in the peripheral blood mononuclear 
cells of MS patients, increased PAD2 expression coupled 
with promoter hypomethylation has been observed, 
highlighting the epigenetic alterations associated with 
the disease [41]. 

EAA may contribute to the development of MS through 
several interrelated mechanisms, as supported by exist-
ing research. 1) Immune dysregulation and “immunose-
nescence”: EAA is closely linked to age-related changes 
in immune function, collectively termed “immunosenes-
cence;“ [42–45] these changes include diminished regula-
tory T cell efficacy and a shift towards pro-inflammatory 
immune phenotypes. Aberrant methylation patterns 

Fig. 4 Forest plot of estimates for effects of multiple sclerosis on epigenetic age acceleration in Mendelian randomization. Estimates were obtained using 
the IVW, MRE, WMed, WMod and SMod
Abbreviations: IVW, inverse variance weighted. MRE, MR Egger. WMed, Weighted Median. WMod, Weighted Mode. SMod, Simple Mode. CI, confidence 
interval. OR, odds ratio. SNPs, single-nucleotide polymorphisms
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in genes regulating T cell differentiation and antigen 
presentation may amplify autoimmune responses, a 
hallmark of MS pathogenesis [42, 46]. 2) Neuroinflam-
mation amplification: epigenetic modifications associated 
with EAA may upregulate pro-inflammatory cytokines 
like IL-6 and TNF-α; [47–49] these changes exacerbate 
microglial activation, impair the blood-brain barrier, and 
promote immune cell infiltration into the CNS, driv-
ing MS-related neuroinflammation [50, 51]. 3) Cellular 
senescence in neural and glial cells: accelerated biologi-
cal aging may induce cellular senescence in key CNS 
cells, including oligodendrocytes and astrocytes; [42, 52, 
53] senescent cells release inflammatory mediators, col-
lectively known as the senescence-associated secretory 
phenotype, which hampers remyelination and exacer-
bates neural damage central to MS progression [54]. 4) 
Oxidative stress and mitochondrial dysfunction: EAA has 
been associated with oxidative stress and mitochondrial 

dysfunction, which are pivotal in MS pathology; [42, 55, 
56] oxidative damage to myelin-producing cells and neu-
rons drives disease progression, and epigenetic altera-
tions may impair antioxidant defenses, exacerbating 
these processes [57]. 5) Environmental and Lifestyle Fac-
tors as Mediators: EAA serves as a cumulative marker for 
exposure to environmental and lifestyle factors, including 
stress, vitamin D deficiency, and poor diet; [58–61] these 
exposures are independently established as MS risk fac-
tors and may synergize with EAA to amplify autoimmune 
responses and promote disease development [62]. 

Early research indicates accelerated epigenetic age in 
individuals with MS. Theodoropoulou E and colleagues 
observed that the EAA of PhenoAge, which more accu-
rately predicts aging outcomes compared to HorvathAge 
and HannumAge, was increased in whole blood samples 
from MS patients relative to healthy controls [63]. Simi-
larly, Maltby et al. found GrimAge in the B cells of MS 

Fig. 5 Scatter plots of multiple sclerosis and epigenetic age acceleration. Multiple sclerosis as exposure, and GrimAge (A), PhenoAge (B), HorvathAge (C) 
and HannumAge (D) as outcome
Abbreviations: MR, Mendelian randomization; SNP, single-nucleotide polymorphism
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participants [12]. In contrast, Kular L and their team 
reported no significant increase in EAA across Hor-
vathAge, GrimAge, PhenoAge, and HannumAge in the 
glial cells of MS patients compared to controls [13]. 
Furthermore, the same set of epigenetic clocks revealed 
significant disparities related to biological aging in lung 
immune cells influenced by MS and smoking [64]. These 
inconsistent findings might be due to the limited num-
ber of cases, the absence of longitudinal follow-up, and 
a lack of comprehensive analysis of MS outcomes. In this 
study, we investigated the causal link between EAA and 
MS using MR analyses. To reduce potential bias due to 
population stratification, we exclusively used GWAS data 
from individuals of European ancestry. Our data were 
carefully sourced from the Edinburgh DataShare and 
the International Multiple Sclerosis Genetics Consor-
tium (IMSGC) Database, ensuring there was no overlap 
in samples. Quality control measures were implemented 
to verify the reliability and robustness of our results. This 
research enhances our understanding of MS risk factors, 
showing that increased odds of MS are associated with 
EAA as measured by the HannumAge clock. Epigenetic 
clocks hold promise as critical tools for clinicians and 
preventive medicine practitioners in assessing MS risk. 
Additionally, slowing down biological aging has become 
a significant area of interest in MS research.

In the context of our analysis, we utilized GrimAge, 
PhenoAge, HorvathAge, and HannumAge, which are 
widely recognized first-generation epigenetic clocks. 
These clocks were chosen for their robustness, extensive 
validation, and well-established associations with vari-
ous age-related conditions, including neurodegenerative 
diseases like MS. Their widespread application highlights 

their reliability in capturing biological aging processes. 
Nonetheless, we recognize the potential of advanced epi-
genetic clocks, such as DamAge and AdaptAge, which 
represent significant advancements in the field. These 
newer clocks offer refined granularity and may cap-
ture more nuanced biological aging signatures, provid-
ing deeper insights into age-related pathologies like MS. 
Unfortunately, the dataset used in this study lacked the 
specific methylation markers required to calculate Dam-
Age or AdaptAge scores, precluding their inclusion in the 
present analysis. Looking ahead, we are eager to incor-
porate DamAge and AdaptAge in future research. Their 
application, particularly in conjunction with longitudinal 
data and larger sample sizes, could greatly enhance our 
understanding of the intricate interplay between epigen-
etic age acceleration and MS pathogenesis.

GWAS data we used were drawn exclusively from 
populations of European ancestry, limiting the gener-
alizability of our findings to other ethnic groups. This 
necessitates caution when extending these results to 
racially and ethnically diverse populations. Additionally, 
we relied on aggregate GWAS data, which prevented a 
stratified analysis by factors such as age and gender due 
to the absence of individual-level data. Despite efforts to 
mitigate confounding, we could not estimate the degree 
of overlap between exposure and outcome data in the 
two-sample MR analysis. To minimize bias from sample 
overlap, we employed robust instruments, ensuring an 
F statistic substantially greater than 25. Although we 
reduced confounding bias from SNPs, there remains the 
possibility that some SNPs could be linked to undetected 
factors that might affect the association between EAA 
and MS. The potential pleiotropic effects of these SNPs 

Table 1 The heterogeneity and pleiotropy analysis of the MR study on epigenetic age acceleration and multiple sclerosis
Exposure Outcome Method Heterogeneity Horizontal pleiotropy MR PRESSO

Q Q_p-value MRE
intercept

p-value Qutliers p-value

GrimAge Multiple sclerosis MRE 7.378 0.194 0.082 0.121 0 0.051
IVW 12.509 0.052

PhenoAge Multiple sclerosis MRE 8.406 0.298 0.002 0.924 0 0.530
IVW 8.418 0.394

HorvathAge Multiple sclerosis MRE 18.689 0.067 0.029 0.555 9 0.150
IVW 19.319 0.081

HannumAge Multiple sclerosis MRE 3.830 0.280 -0.017 0.757 0 0.235
IVW 3.977 0.409

Multiple sclerosis GrimAge MRE 76.473 0.528 0.020 0.279 0 0.550
IVW 77.663 0.521

Multiple sclerosis PhenoAge MRE 106.905 0.040 0.006 0.528 0 0.076
IVW 107.422 0.043

Multiple sclerosis HorvathAge MRE 73.356 0.153 -0.008 0.462 23 0.084
IVW 74.003 0.162

Multiple sclerosis HannumAge MRE 115.737 0.010 0.006 0.436 1 0.059
IVW 116.593 0.011

Abbreviations: MR, Mendelian randomization; MRE, MR Egger; IVW, Inverse Variance Weighted, Q, Cochran’s Q test
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cannot be completely ruled out, warranting a cautious 
interpretation of our MR analysis results. Moreover, the 
epigenetic GWAS data we utilized are based on blood 
counts and clinical markers, which could lead to differ-
ent outcomes as more diverse samples and GWAS data 
become available in the future.

Conclusion
Our findings indicate a potential causal relationship 
between EAA and the risk of MS. Specifically, geneti-
cally predicted EAA using the HannumAge clock appears 
to elevate the risk of developing MS. This underscores 
the significance of targeting biological aging as a novel 
avenue for MS research and potential intervention. To 
further substantiate the causal role of EAA in MS, large-
scale studies involving diverse populations are essen-
tial. These studies will help to clarify the impact of EAA 
across different genetic backgrounds and improve our 
understanding of its role in MS pathology.
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