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Abstract 

Background Thyroid-associated ophthalmopathy (TAO) is an autoimmune orbital disease influenced by multiple fac-
tors, including genetic and immune factors. The enlargement of orbital fat tissues are mainly due to abnormal activa-
tion of adipocyte differentiation. Epigenetic modifications provide mechanistic insight for regulating gene expression 
and cellular differentiation. Lysine specific demethylase 1 (LSD1) is reported in regulation of adipogenesis. Therefore, it 
is critical to investigate the relationship between epigenetic modifier LSD1 and histone modification level during TAO 
process.

Results In this study, combined with the clinic study and highthrough sequencing approach, our results revealed 
that the volume of orbital fat tissue was lower in TAO patients compared to non-TAO patients, whereas the number 
of adipocytes was higher in TAO patients compared to non-TAO patients, the expression level of adipocyte differentia-
tion markers were higher in TAO samples. Consistently, at the cellular system, the expression level of adipogenic mark-
ers were higher in the TAO derived cells compared with the non-TAO cells. And we found LSD1 was highly expressed 
in TAO-derived cells. However, knocking down LSD1 decreased the expression of adipocyte markers. Mechanistically, 
LSD1 promoted adipocyte gene activation by demethylating H3K9me2 at the promoter regions. Finally, treatment 
with pargyline, an LSD1 inhibitor, inhibited adipogenesis in a dose-dependent manner, and the same inhibition 
of adipogenesis results were obtained with treatment with teprotumumab alone or combined with pargyline.

Conclusions Overall, our study indicates that epigenetic modifications were dysregulated in TAO process, and these 
data elucidated a novel mechanism of adipocyte differentiation during TAO progression and positioned LSD1 
as a potential anti-adipogenesis target in TAO. Further understanding of the interaction betwen transcription fac-
tors and epigeneic modifiers or other histone modifications in TAO is essential for providing new perspectives in TAO 
mechanistic study and clinical intervention.
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Introduction
TAO, also referred to as Graves’orbitopathy, is a prevalent 
autoimmune disorder [1–3] frequently manifested as eye-
lid retraction, exophthalmos, and double vision. In severe 
cases, it can elicit corneal ulceration and decrease visual 
acuity [1, 4]. Mechanistically, these syndromes result 
from the enlargement of extraocular muscles and orbital 
adipose tissues [1]. Notably, earlier studies have estab-
lished that orbital fibroblasts are major targets in TAO 
pathogenesis [5]. They are heterogeneous and display 
different surface markers, such as CD34, CD40, thyro-
tropin receptor, and insulin-like growth factor-1 (IGFR-
1) receptor [6]. The release of cytokines and chemokines 
drives the activation of surface markers, resulting in the 
synthesis of glycosaminoglycans, such as hyaluronan, 
which, in turn, induce tissue swelling and TAO [7].

The differentiation of preadipocytes to mature adi-
pocytes is governed by transcription factors such as 
CCAAT/enhancer binding proteins (C/EBPs) and per-
oxisome proliferator-activated receptor gamma (PPARγ) 
under adipogenic stimuli. The coordination of these 

transcription factors maintains adipocyte gene expres-
sion, including fatty acid binding protein 4 (FABP4) and 
adiponectin (ADIPOQ) [8, 9]. Previous studies have 
determined that cells isolated from orbital fat tissues in 
TAO are susceptible to adipogenesis upon stimulation 
[10, 11]. However, orbital adipose fibroblasts are het-
erogeneous in terms of surface receptor expression [12]. 
Their morphology and gene transcript profiles are dis-
tinct from those in different regions of the human body 
in response to inflammatory factors, hormones, and 
prostaglandins [12, 13], indicating that the molecular 
mechanism underlying adipogenesis in TAO is different 
from those outlined in prior research.

Lysine-specific demethylase 1 (LSD1) was the first 
demethylase identified and functions as a repressive 
marker by removing mono- or dimethyl groups from 
lysine 4 of histone 3 (H3 K4) and as an active marker 
for demethylating H3 K9 [14–16]. Its activity is modu-
lated by interactions with transcription factors under 
various physiological processes [14, 17, 18]. Of note, 
LSD1 mediates embryonic stem cell self-renewal and the 
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differentiation of adipose tissue [19–21]. According to 
earlier studies, its high expression indicates a poor prog-
nosis in various cancer types [22, 23]. Nevertheless, the 
regulatory role of LSD1 in TAO and the molecular mech-
anism remain elusive.

Therefore, this study aimed to analyze the morpho-
logical and molecular features of orbital adipocyte tissues 
derived from non-TAO and TAO patients. The results 
also demonstrated that LSD1 was highly expressed in 
TAO-derived cells and orbital adipocyte tissue collected 
from TAO patients, whilst knocking down LSD1 expres-
sion decreased the expression of adipocyte genes and 
inflammatory factors. Mechanistically, LSD1 demeth-
ylated H3 K9 me2 at the promoter regions of adipocyte 
differentiation marker genes to activate their expression, 
leading to adipocyte hypertrophy in TAO. Overall, the 
current study uncovered a novel mechanism targeting 
adipogenesis in TAO.

Results
Characteristics of human orbital fat tissues
Adipocyte formation involves the differentiation of mes-
enchymal stem cells to preadipocyte cells and terminal 
differentiation. These cells are the primary component 
of adipocyte tissue [9]. The number and size of adipo-
cytes exhibit significant plasticity under physiological 
and pathophysiological conditions [24]. Several studies 
have concluded that orbital fibroblasts derived from TAO 
patients can serve as preadipocyte cells and undergo 
adipogenesis. However, the mechanisms that trigger 
aberrant adipocyte differentiation in TAO remain to be 
elucidated.

To investigate the effects of the expansion of orbital 
fat tissues, orbital fat tissues were collected from TAO 
patients and control participants (non-TAO) undergoing 
surgical decompression. Histological analysis displayed 
that the volume of orbital fat tissue was lower in TAO 
patients compared to non-TAO patients, whereas the 
number of adipocytes was higher in TAO patients com-
pared to non-TAO patients (Fig. 1A), consistent with the 
findings of a previous study [11]. As expected, the expres-
sion levels of adipocyte differentiation markers, includ-
ing PPARγ, FABP4, PGC1a and CIDEA, were higher in 
TAO samples (Fig. 1B). Adipose tissues can be classified 
into white and brown adipose tissue, each with distinct 
morphological and functional properties. Noteworthily, 
a recent study identified another type, namely beige adi-
pose tissue. Molecular analysis revealed that orbital fat 
tissue expressed high expression levels of several beige fat 
tissue markers (Fig. 1C). Immune cells located in adipose 
tissues and adipogenesis promote inflammation [25]. 
Indeed, the expression levels of inflammatory factors 

were high in orbital fat tissue (Fig.  1D). Overall, these 
results indicated that the activity and formation of new 
adipocytes are increased in TAO.

Role of LSD1‑mediated adipogenesis in TAO
To identify regulators underlying adipogenesis in TAO, 
cells derived from the orbital fat tissue of TAO and non-
TAO patients were isolated and immortalized, as out-
lined in a previous study [11]. At the cellular level, the 
proliferation rate was comparable between the non-TAO 
and TAO groups (Extended Fig. 1 A). On the other hand, 
the expression levels of inflammatory factors and adipo-
genic markers were higher in the TAO group compared 
to the non-TAO group (Fig. 2A, B), in line with the afore-
mentioned results.

Epigenetic modifications differ across varying cell 
types, such as precursors and differentiated adipocytes. 
Thus, epigenetic modulators potentially play a key role 
in adipogenesis [26]. LSD1 has been reported to regu-
late the differentiation and activity of adipose tissue [21]. 
Our results unveiled that LSD1 was highly expressed in 
TAO-derived cells (Fig. 2C). To further confirm the role 
of LSD1 in TAO, LSD1 was knocked down in immor-
talized TAO cells using small hairpin RNA (shRNA) 
(Extended Fig.  1B). This efficiently reduced the protein 
levels of LSD1 and substantially decreased the expression 
levels of inflammatory factors and adipogenesis marker 
genes (Fig. 2D–F), as well as the quantity of lipid drop-
lets (Extended Fig. 1 C, D). Likewise, the protein level of 
UCP1 and PGC1α was decreased (Fig.  2G), indicating 
that LSD1 is a potential regulator of TAO progression.

To elucidate the molecular mechanism by which 
LSD1 regulates adipogenesis during TAO, the tran-
scriptomic profile of LSD1 was first determined in TAO 
cells. Therefore, RNA-sequencing was performed in 
TAO-derived cells, following LSD1 knockdown. The 
results demonstrated that the expression of 2119 genes 
was upregulated, whilst that of 3179 genes was down-
regulated (Fig. 3A, B), including FABP4, PPARγ, IL6 and 
IL1B (Fig. 3C). Gene set enrichment analysis (GSEA) was 
conducted to assess gene ontology (GO), revealing that 
genes downregulated following LSD1 knockdown were 
enriched in biological processes related to lipid metabo-
lism, such as fatty acid biosynthesis and lipid droplet for-
mation (Fig. 3D). Meanwhile, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis showed that genes 
with lower expression levels following LSD1 knock-
down were involved in metabolic and immune pathways 
(Fig. 3E).

Taken together, these results collectively suggested that 
LSD1 regulated the gene expression of lipid and immune 
pathways in TAO pathogenesis.
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LSD1 exerts dual activities, demethylating either H3 
K4 me2 or H3 K9 me2, leading to transcription repres-
sion or activation, respectively [14, 17]. To investigate 
the epigenetic status of TAO-derived cells, western blot 
analysis was initially performed. The results showed that 
the global level of H3 K9 me2 was lower in TAO-derived 
cells compared to non-TAO cells (Fig. 4A), whereas LSD1 
knockdown in TAO-derived cells increased the levels 
of H3 K9 me2 (Fig.  4B) and concurrently decreased H3 
K4 me2 levels (Fig.  4C), suggesting that LSD1 poten-
tially regulate target gene expression by demethylating 

H3 K9 me2, activating the expression of inflammatory 
and adipogenic genes, and promoting TAO progression. 
To validate this hypothesis, a ChIP-seq assay was per-
formed using an H3 K9 me2 antibody. As anticipated, 
the enrichment of H3 K9 me2 at the promoter region 
was lower in TAO-derived cells compared to non-TAO-
derived cells (Fig. 4D), while LSD1 inactivation in TAO-
derived cells enhanced the enrichment of H3 K9 me2 
at the transcriptional start site (TSS) (Fig.  4E), indica-
tive that LSD1 demethylated H3 K9 me2 at the TSS. In 
addition, GO analysis signaled that genes downregulated 
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Fig. 1 Characteristics of human orbital fat tissues. The morphology of adipose cells in orbital adipose tissues was observed by H&E staining 
of non-TAO and TAO patients group, and quantification of the number and size of adipose cells (A), scale bar: 200 μm. *p < 0.05, **p < 0.01, ***p 
< 0.001 according to the unpaired t-test, n = 3 biological repeats. Expression of adipose differentiation genes in normal orbital adipose tissues 
and in orbital adipose tissues of  TAO patients (B), *p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, n = 2 biological repeats. 
Expression of White, Brown and Beige adipose differentiation genes in normal human orbital adipose tissues and in orbital adipose tissues of TAO 
patients (C), *p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, n = 2 biological repeats. Expression of inflammatory factors 
in normal orbital adipose tissues and in orbital adipose tissues of TAO patients (D),*p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way 
ANOVA test, n = 2 biological repeats
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following LSD1 knockdown were involved in the adipo-
cyte differentiation pathway (Fig. 4F). Specifically, H3 K9 
me2 enrichment was lower at the promoter regions of the 
adipogenic marker gene FABP4 and inflammatory genes 
IL6 and CCL18 in TAO-derived cells compared to non-
TAO-derived cells and was increased following LSD1 
knockdown in TAO-derived cells (Fig.  4G, H, Extended 
Fig. 2 A), implying that LSD1 directly binds and regulates 
the H3 K9 me2 levels of these genes.

Inactivation of LSD1 enzymatic activity inhibited 
adipogenesis in TAO
LSD1 can alter the phenotype and metabolic state of 
adipose tissue and re-encode the fate of adipocytes 
[27]. The correlation between LSD1 expression and 
TAO progression positioned LSD1 as a potential target 
for inhibiting preadipocyte differentiation. To validate 
this theory, adipogenesis was induced in TAO-derived 
cells in the presence or absence of the LSD1 inhibitor 
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Fig. 2 LSD1 knockdown can inhibit adipocyte differentiation. Expression of Inflammatory factors in normal orbital adipose cells and in orbital 
adipose cells derived from TAO patients (A),*p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, n = 3 biological repeats. 
Expression of adipose differentiation genes in normal human orbital adipose cells and in orbital adipose cell derived from TAO patients (B), *p 
< 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, n = 3 biological repeats. Western blot analysis of LSD1 protein level in non-TAO 
orbital adipose cells and TAO orbital adipose cells (C). Efficiency detection of lentivirus-mediated LSD1 knockdown in orbital adipose cells derived 
from TAO patients (D). Expression of adipose differentiation genes in TAO orbital adipose cells and TAO orbital adipose cells knocking down LSD1 
(E), *p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, n = 3 biological repeats. Expression of inflammatory genes in TAO 
orbital adipose cells and TAO orbital adipose cells knocking down LSD1 (F),*p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, 
n = 3 biological repeats. Western blot analysis of UCP1, PGC1α proteins level in TAO orbital adipose cells and TAO orbital adipose cells knocking 
down LSD1 (G)
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pargyline, as well as with dexamethasone, isxobutyl-
methylxanthine, rosiglitazone, and insulin as outlined 
in a previous study [11], and the effects of LSD inhi-
bition were monitored by quantifying lipid accumu-
lation using BODIPY staining on day 14. The results 
showed that the LSD1 inhibitor suppressed lipid drop-
let formation in a dose-dependent manner at con-
centrations ranging from 1  µM to 6  µM (Fig.  4I, J). 
Consistently, the expression levels of adipogenic and 
inflammatory genes, including FABP4, UCP1, PRDM16, 
CIDEA, PPARγ, PPARGC1 A and IL1B, were decreased 
(Fig.  5C–I). Teprotumumab, a monoclonal antibody 
used to inhibit insulin-like growth factor 1 receptor 
(IGF-1R), is FDA-approved for the treatment of TAO 
[28]. Treatment with teprotumumab inhibited lipid 

droplet formation and downregulated the expression 
of adipogenesis-related genes (Fig. 5A, B, C–H). More 
importantly, combination treatment with pargyline and 
teprotumumab exerted an additive inhibitory effect 
on adipogenesis, as evidenced by the lipid droplet size 
and the expression of adipogenic markers, whereas 
no effects were noted on the levels of inflammatory 
factors(Fig. 5A–I).

These results conjointly showed that LSD1-mediated 
removal of H3 K9 me2 at the promoter regions of adipo-
genic markers plays a decisive role in orbital adipogen-
esis in TAO. Furthermore, the potential anti-adipogenic 
effects of LSD1 inhibitors showed promise as therapeutic 
agents for the treatment of TAO.
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Discussion
Herein, LSD1 was highly expressed in orbital adipocyte 
tissue and immortalized cells derived from TAO patients, 
while inactivation of LSD1 down-regulated the expres-
sion of inflammatory genes and adipocyte marker genes. 
Mechanistically, LSD1 removed H3 K9 me2 at the pro-
moter regions of genes involved in adipocyte differen-
tiation, leading to the activation of gene expression and 
promotion of TAO progression. Finally, LSD1 inhibitors 
repressed adipogenesis in TAO-derived cells.

TAO is an organ-specific autoimmune disease hall-
marked by increased adipogenesis, edema, and fibrosis. 
The results of this study also revealed high expression 
levels of inflammatory genes. Considering that adipose 
tissue is an important reservoir for immune cells [25], it 

is crucial to explore the regulatory relationship between 
adipocyte markers and inflammatory factors in TAO. 
Epigenetic modifications (DNA methylation, noncoding 
RNAs, and histone modification) have been observed to 
be dysregulated in the receptors of patients with auto-
immune-related diseases, including TAO [29]. However, 
the involvement of epigenetic regulators in TAO remains 
unknown. LSD1 was first identified to demethylate H3 K4 
me2, resulting in transcriptional repression. Besides, it 
activated gene expression following recruitment by hor-
mone-dependent receptors, including androgen receptor 
(AR), estrogen receptor (ER) and hormone-independent 
estrogen-related receptor (ERR) [18]. Given that LSD1 
promoted the expression of adipocyte marker genes and 
inflammatory genes through the removal of H3 K9 me2, 
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the presence of an interaction between LSD1 and TSHR 
or unknown transcription factors that recruits LSD1 
and modulates its enzymatic activity in TAO cannot be 
excluded. The role of LSD1 in adipocyte differentiation 
is also associated with energy metabolism [30, 31]. Nev-
ertheless, the impact of LSD1-mediated adipogenesis in 
TAO formation on cellular metabolism warrants further 
exploration.

LSD1 has been found to be highly expressed in cancer 
cells, with epidemiological data suggesting a correlation 
between high LSD1 expression and poor prognosis [22], 
thereby implicating  the critical role of   LSD1 in can-
cer progression. In the functional analysis, the inactiva-
tion of LSD1 enzymatic activity suppressed adipocyte 

differentiation of TAO-derived cells. Taken together, the 
current study suggests that LSD1 promotes adipogenesis 
in TAO progression, with its down-regulation being a 
potential and promising approach for alleviating aberrant 
adipogenesis in TAO.

Materials and methods
Ethics statement
This study was approved by the Medical Ethical Com-
mittee of Shanghai General Hospital approved this study 
(research license 2021 KY008) after a thorough evalu-
ation of its scientific merit and ethical justification. All 
participants voluntarily provided written informed 
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Fig. 5 The combination of LSD1 inhibitor and clinical drugs can effectively reduce the adipogenesis in TAO cells. Representative images of oil red 
staining of lipid droplets in TAO cells treatment with DMSO, Teprotumumab (T), Pargyline (P), Teprotumumab + Pargyline(T + P) (A), scale bar: 20 μm. 
Quantitative analysis of the number of lipid droplets in A (B). *p < 0.05, **p < 0.01, ***p < 0.001 according to the Two-way ANOVA, n = 6 biological 
repeats. Expression of adipose differentiation genes and Inflammatory factor in TAO cells treatment with DMSO, Teprotumumab (T), Pargyline (P), 
Teprotumumab + Pargyline(T + P) (C–I). *p < 0.05, **p < 0.01, ***p < 0.001 according to the two-way ANOVA test, n = 3 biological repeats
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consent prior to the collection of orbital fat tissue for 
research purposes. This study adhered to the princi-
ples outlined in the Declaration of Helsinki regarding 
research involving human subjects.

Isolation of human orbital stromal stem cells
Orbital stromal stem cells were isolated from the orbital 
adipose depot of TAO patients and healthy participants 
with fat levels within the normal range. Next, the tissue 
was minced and homogenized using spring scissors. It 
was then transferred into a 15 mL Falcon tube contain-
ing digestion buffer (175 U/mL Collagenase, Type1, Dia-
mond, Cat#A004194), which was subsequently incubated 
in a 37 ℃ water bath. Afterward, the tube was vortexed 
every 30 min for 2 h. Then, the tissue slurry was filtered 
through a 100 μm cell strainer, and digestion was ter-
minated by the addition of 10% fetal bovine serum in 
DMEM/F12 medium. After centrifuging at 600 rpm for 
5  min, the supernatant was discarded, and the stromal 
vascular fraction (SVF) was resuspended in DMEM/F12 
medium supplemented with 10% FBS and 1% penicillin–
streptomycin (PS). The medium was changed every three 
days.

Generation of immortalized human orbital stromal stem 
cells
Isolated primary preadipocytes were infected with a ret-
rovirus containing TERT plasmid, pBABE-hTERT-Hygro, 
which expresses hTERT driven by a long-term repeat 
promoter. 293 T cells were transfected with pBABE-
hTERT-Hygro DNA using the PolyJet DNA in vitro trans-
fection reagent. Viral supernatants were collected after 
48 h and filtered through a 0.45 µm filter. Afterward, pri-
mary adipocytes were infected with supernatant in the 
presence of 8 µg/mL Polybrene. Lastly, cells were treated 
with 1000 μg/mL hygromycin B in DMEM/F12 medium 
containing 10% FBS and antibiotics.

In vitro preadipocyte differentiation
Confluent cells were treated with DMEM/F12 medium 
supplemented with 10% FBS, 1%PS, 5  μg/mL insulin 
(#12585014, ThermoFisher Scientific), 1  μM dexameth-
asone (#D4902, Sigma), 1  μM rosiglitazone (#R2408, 
Sigma), and 0.5 μM isxobutylmethylxanthine (IBMX) 
(#13630S, Cell Signaling Technology) for the first 6 days. 
The medium was replaced with a maintenance medium 
(DMEM/F12 supplemented with 10% FBS, 1% PS, 1 μM 
rosiglitazone, and 5  μg/mL insulin) for the subsequent 
8 days. The medium was changed every three days until 
14 days.

Oil red O staining
After 14 days of differentiation, cells were washed twice 
with PBS and fixed with 4% paraformaldehyde for 30 
min. Lipids were stained using Oil Red O following the 
manufacturer’s protocol (BioVision, Cat#K580), and 
stained cells were washed five times with PBS and visu-
alized under a microscope (FV3000) for morphological 
analysis.

RNA isolation and qRCR analysis
Total cells were extracted from cells or tissues using 
TRIzol (Invitrogen) and reverse-transcribed into cDNA 
using the Takara PrimeScript RT reagent kit according 
to the manufacturer’s instructions. Quantitative reverse 
transcriptase PCR (qRT-PCR) was performed using 
SYBR green fluorescent dye on the ViiA7 Real-Time 
PCR system (Life Technologies). The 2-ΔΔCt method 
was used to calculate the gene expression level of each 
mRNA. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) served as a reference for normalization. The 
sequences of primers used in this study are provided as 
follows:

Gene name Forwards Reverse

hPPARg ACC AAA GTG CAA TCA 
AAG TGGA 

ATG AGG GAG TTG GAA 
GGC TCT 

hPPARGC1 A TGA AGA CGG ATT GCC 
CTC ATT 

GCT GGT GCC AGT AAG 
AGC TT

hCIDEA TTA TGG GAT CAC AGA 
CTA AGCGA 

TGC TCC TGT CAT GGT 
TGG AGA 

hIL1B TTC GAC ACA TGG GAT 
AAC GAGG 

TTT TTG CTG TGA GTC 
CCG GAG 

hIL6 ACT CAC CTC TTC AGA 
ACG AATTG 

CCA TCT TTG GAA GGT 
TCA GGTTG 

hIL-1Ra CAT TGA GCC TCA TGC 
TCT GTT 

CGC TGT CTG AGC GGA 
TGA A

hIL-8 ACT GAG AGT GAT TGA 
GAG TGGAC 

AAC CCT CTG CAC CCA 
GTT TTC 

hIL-10 GAC TTT AAG GGT TAC 
CTG GGTTG 

TCA CAT GCG CCT TGA 
TGT CTG 

hIL-18 TCT TCA TTG ACC AAG 
GAA ATCGG 

TCC GGG GTG CAT TAT 
CTC TAC 

hIL16 GCC GAA GAC CCT TGG 
GTT AG

GCT GGC ATT GGG CTG 
TAG A

hIL18 TCT TCA TTG ACC AAG 
GAA ATCGG 

TCC GGG GTG CAT TAT 
CTC TAC 

hCCL14 CCA AGC CCG GAA TTG 
TCT TCA 

GGG TTG GTA CAG ACG 
GAA TGG 

hCCL4 CTG TGC TGA TCC CAG 
TGA ATC 

TCA GTT CAG TTC CAG 
GTC ATACA 

hFABP4 ACT GGG CCA GGA ATT 
TGA CG

CTC GTG GAA GTG ACG 
CCT T

hC/EBPa AAC ACG AAG CAC GAT 
CAG TCC 

CTC ATT TTG GCA AGT 
ATC CGA 



Page 10 of 12Xu et al. Epigenetics & Chromatin           (2025) 18:28 

Gene name Forwards Reverse

hADIPOQ CTG GTG AGA AGG GTG 
AGA AAG 

GTT TCA CCG ATG TCT 
CCC TTAG 

hCCDC80 GAC CCC GTT TCA CTA 
TGC TGT 

GGC GAG CTA GTC TCA 
ACA CG

hpSat GGC CAG TTC AGT GCT 
GTC C

GCT CCT GTC ACC ACA 
TAG TCA 

hEBF3 GGG GAC GAC CAT GAA 
GGA G

CCC CTG CCT ATC GTA 
GAG C

hANKRD28 AAT TGC TTG TGT CGC 
ATG GAG 

TAG CAG GCT ACA TGA 
AGA GGT 

hGLRX5 CTC CGA CAA GGC ATT 
AAA GACT 

AAC TCG CCA TTG AGG 
TAC ACT 

hCOQ6 GTT TTG GTG CCT GGG 
ACC ATA 

TCC ACG ATA TAG CCC 
ATG TCA 

hNDUFS8 CCA TCA ACT ACC CGT 
TCG AGA 

CCG CAG TAG ATG CAC 
TTG G

hLXH8 GAA TGA CCT ATG CTG 
GCA TGT 

ACC CAG TCA GTA GAA 
TGG ATGTG 

hTMEM26 ATG GAG GGA CTG GTC 
TTC CTT 

CTT CAC CTC GGT CAC 
TCG C

hEPSTI ACC CGC AAT AGA GTG 
GTG AAC 

GCT ATC AAG GTG TAT 
GCA CTTGT 

Western blot analysis
Protein extracts were prepared using radioimmuno-
precipitation assay (RIPA) buffer supplemented with a 
protease inhibitor cocktail (1:100, Meilunbio). Tissue 
samples were homogenized using an ultrasonication 
machine, and the supernatant was collected. Protein con-
centration was determined using a BCA protein assay 
kit (Thermo Fisher Scientific). Approximately 30–60 μg 
of protein was separated via electrophoresis on 10% and 
15% Tris–glycine SDS-PAGE gels and then transferred to 
a 0.22-μm PVDF membrane (Millipore). The membrane 
was blocked for 1  h at room temperature using TBST 
containing 5% skim milk and subsequently incubated 
overnight at 4  °C with the primary antibody diluted in 
QuickBlock™ Primary Antibody Dilution Buffer (Beyo-
time). Afterward, the membrane was incubated with 
horseradish peroxidase (HRP)-conjugated secondary 
antibody in 5% skim milk, and the protein bands were 
visualized using ECL chemiluminescence. Band intensity 
was quantified using ImageJ software (NIH).

Cell counting kit‑8 (CCK‑8) assay
Cells (1000/well) were seeded into a 96-well transpar-
ent dish. The CCK-8 solution was added to the medium 
(1:100) and incubated at 37 °C for 4 h. Then, absorbance 
was determined at 450 nm, and the cell number was 
derived from the standard curve.

CUT&TAG library generation and sequencing
CUT&TAG was carried out following established pro-
tocols using the Hyperactive In-Situ ChIP Library Prep 
Kit for Illumina (Vazyme Biotech, TD901). Briefly, cells 
were treated with 10 μL of pre-washed ConA beads in 
a 1.5-mL low-binding tube. Next, 50 μL of antibody 
buffer containing 0.5 μg of antibody was added, and 
the mixture was incubated for 2  h at room tempera-
ture. After two washes with dig-wash buffer, 50 μL of 
dig-wash buffer and 0.5 μg of secondary antibody were 
added, followed by incubation at room temperature for 
30 min. The samples were washed twice with 800 μL of 
dig-wash buffer, following which 0.58 μL of pG-Tn5 and 
100 μL of dig-300 buffer were added. After incubating 
at room temperature for 1 h, the samples were washed 
twice with 800 μL of dig-wash buffer. Tagmentation 
was performed by introducing 300 μL of tagmentation 
buffer, followed by incubation at 37 °C for 1 h. The reac-
tion was terminated by adding 10 μL of 0.5 M EDTA, 
3 μL of 10% SDS, and 2.5 μL of 20 mg/mL Proteinase K. 
Following phenol–chloroform extraction and ethanol 
precipitation, PCR was conducted to generate librar-
ies, which were sequenced using Illumina Hi-Seq Xten 
or Hi-Seq 2500 systems, following the manufacturer’s 
instructions.

RNA sequencing (RNA‑seq) analysis
Total RNA was extracted from the cells as previously 
described. A Nanophotometer NP80 was used to quan-
tify RNA concentration and purity. For RNA sequencing, 
the RNA samples were analyzed by LC-Biotechnology 
Co., Ltd. (Hangzhou, China). The final cDNA library had 
an average insert size of 300 ± 50 bp, and sequencing was 
conducted using 2 × 150-bp paired-end reads (PE150) on 
an Illumina NovaSeq™ 6000, following the manufactur-
er’s protocol.

The raw RNA-seq data, provided in fastq format, 
were processed using fastq v0.23.2 with default settings, 
which involved trimming reads with adapters, excluding 
low-quality reads, and filtering sequences containing N 
bases. The cleaned data were then aligned to the GRCh38 
(UCSC) genome assembly using STAR v2.7.10a with 
default parameters. Uniquely mapped read pairs were 
quantified using featureCounts v2.0.1. The resulting gene 
count matrix was normalized via quantile normalization 
using the R package DESeq2 v1.32.0. A log transforma-
tion of this matrix was applied for principal component 
analysis (PCA). Differentially expressed genes (DEGs) 
were identified using DESeq2, using criteria of adjusted 
P < 0.05 and absolute log2|FoldChange|≥ 1. KEGG and 
GO enrichment analyses for the DEGs were conducted 
using clusterProfiler v4.6.0. Similarly, gene counts, and 
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P-values for these terms were visualized using cluster-
Profiler v4.6.0. Significant DEGs were further illustrated 
through heat maps and bar plots generated using heat-
map v1.0.12 and ggplot2 v3.4.0, respectively.

CUT &TAG sequencing analysis
Raw sequencing data was filtered using fastp (version 
0.23.1) to discard low-quality reads and trim reads con-
taminated with adaptor sequences. Clean reads were 
mapped to the reference genome of Homo from Homo_
sapiens.GRCh38.dna.toplevel.fa using bowtie2 (version 
2.2.6) with default parameters. Sambamba (version 
0.7.1) was employed for sam/bam format conversion 
and PCR duplicate read removal. RSeQC (version 2.6) 
was employed for read distribution analysis. The insert 
length was counted using Collect Insert Size Metrics 
tools from Picard software (version 2.8.2). DeepTools 
(version 2.4.1) was used to visualize the distribution of 
reads around TSS. MACS2 software (Version 2.2.7.1) 
was used for peak calling. Bedtools (version 2.30.0) was 
utilized for peak annotation and distribution analy-
sis. Differential peaks were identified using csaw (ver-
sion 1.24.3). The Homer (version 4.10) was utilized for 
motif analysis. Gene ontology (GO) analysis and Kyoto 
Encyclopedia of genes and genomes (KEGG) enrich-
ment analyses for annotated genes were performed 
using KOBAS software (version 2.1.1), with a corrected 
P-value cutoff of 0.05 applied to determine statistically 
significant enrichment.

Statistical analysis and software
Differences between two sets of data were evaluated 
using a two-tailed Student’s t-test, while comparisons 
among more than two groups were conducted using one-
way ANOVA for human data analysis. Data were pre-
sented as mean and standard deviation (SEM). Statistical 
analyses were conducted using GraphPad Prism (Graph-
Pad Software). A P-value less than 0.05 was considered 
statistically significant.
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