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Abstract 

Background Respiratory syncytial virus (RSV) poses significant morbidity and mortality risks in childhood, particularly 
for previously healthy infants admitted to hospitals lacking predisposing risk factors for severe disease. This study 
aimed to investigate the role of the host epigenome in RSV infection severity using non-invasive buccal swabs 
from sixteen hospitalized infants admitted to the hospital for RSV infection. Eight patients had severe symptoms, 
and eight had mild to moderate symptoms. For DNA methylation analyses, the Illumina EPIC BeadChip was used 
with DNA isolated from saliva samples. To evaluate the basal DNA methylation level of the identified biomarkers 
a cohort of healthy control children was used. Furthermore, DNA methylation levels of candidate genes were 
confirmed by pyrosequencing in both the discovery and validation cohorts of patients with mild to moderate 
symptoms.

Results A panel of differentially methylated positions (DMPs) distinguishing severe from mild to moderate 
symptoms in infants was identified. DMPs were determined using a threshold of an adjusted P-value (false discovery 
rate, FDR) < 0.01 and an absolute difference in DNA methylation (delta beta) > 0.10. Differentially methylated 
regions (DMRs) were identified in the ZBTB38 (implicated in asthma and pulmonary disease) and the TRIM6-TRM34 
gene region (associated with viral infections). The differential DNA methylation of these genes was validated 
in an independent replication cohort. A weighted correlation network analysis emphasized the pivotal role 
of a module with RAB11FIP5 as the hub gene, known for its critical function in regulating viral infections.

Conclusions Oral mucosa methylation may play a role in determining the severity of RSV disease in infants.
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Background
Respiratory syncytial virus (RSV), the primary cause 
of acute lower respiratory infections (ALRIs) in young 
children across the globe, infects almost all children 
by the age of two and is responsible for a considerable 
number of infant hospitalizations [1–4]. Although most 
RSV hospitalizations occur in previously healthy children 
born at term, current prevention strategies still primarily 
focus on specific at-risk children [5]. Evidence suggests 
that the severity of RSV bronchiolitis occurring in infancy 
could be associated with immunological mechanisms [6]. 
In fact, RSV infections occur more frequently in the first 
years of life when the immune system is immature.

Understanding the underlying molecular mechanisms 
of RSV infection and the resulting immune response is 
important for developing more effective treatments and 
preventive measures.

While several studies have been carried out on host 
genome susceptibility to RSV infection [7, 8] and 
gene expression [9–11], only a few of them have been 
performed in the field of epigenomics [12]. Epigenetic 
regulation serves as a dynamic interface between the 
genome and the environment. Thus, in the context of 
viral or bacterial infections, the regulation of host defense 
cells by epigenetic mechanisms is directly linked to the 
development of the disease [13]. Evidence suggests that 
epigenetic processes play a critical role in modulating 
the interaction between the host and the causal pathogen 
[14].

Recently, we have demonstrated the role of blood DNA 
methylation (DNAm) in the development of respiratory 
sequelae after RSV infection [15]. One year later, in 2023, 
Zhaozhong Zhu et  al. [16] conducted an epigenome 
wide association study (EWAS) on blood samples to 
study the  DNAm patterns  in infants hospitalized with 
bronchiolitis, 423 of whom were infected by RSV. While 
blood is widely used in epigenomic biomedical research 
and is considered a valuable tissue for biomarker 
discovery, it is important to recognize the advantages of 
alternative sample types. Saliva, in particular, has gained 
attention due to its non-invasive collection process, 
particularly for research studies involving children. 
In recent years, saliva and buccal swabs samples  have 
emerged as crucial samples in different areas of medical 
research, particularly for neurodegenerative diseases [17, 
18], due to its ability to reflect brain-related biological 
processes [19].

Saliva is an attractive, accessible source of cells from 
which a high quantity and quality of DNA/RNA can 
be obtained. It is known that both white blood cells 
originating from mesoderm and epithelial cells from 
ectoderm are present in the mouth [20]. Despite these 
data, very few studies exist in the literature on the 

identification of molecular host factors in saliva in 
the context of infections [21, 22]. Recent studies have 
provided evidence that RSV, as other respiratory viruses, 
is frequently detected in saliva and sputum samples 
[23]. However, no research have explored the potential 
of using buccal swab to investigate DNAm signatures 
associated with RSV disease or used epigenomics in this 
context.

Methods
Aim of the study
We aimed to investigate the role of host DNA 
methylation (DNAm)  in the severity of RSV infection 
using buccal swab samples collected from patients with 
mild/moderate and severe symptoms during the acute 
phase of infection. To the best of our knowledge, this is 
the first time that DNAm has been explored to study RSV 
severity in buccal swab samples.

Study design
Sixteen patients with RSV infection were chosen 
from a cohort that was prospectively enrolled in an 
observational study conducted in Spain, facilitated by a 
national hospital-based research network for pediatric 
respiratory research called GENDRES (Genetics, Vitamin 
D and Respiratory Infections Research Network—
www. gendr es. org). RSV infection was confirmed by 
polymerase chain reaction (PCR) upon presentation to 
the hospital. A saliva ORAGENE buccal swab sample was 
collected from each participant during the acute phase 
of RSV infection, typically within seven days of symptom 
onset.

Table 1 presents the clinical history and characteristics 
of the study subjects. The clinical severity of the disease 
was determined based on the need for intensive care, 
invasive respiratory support, and the ReSViNET score 
[24]. The ReSViNET score, used as a parameter of 
severity classification, is a clinical scoring system used 
to assess patients’ severity of acute respiratory infections 
(ARIs). Seven parameters were considered: feeding 
intolerance, medical intervention, respiratory difficulty, 
respiratory frequency, apnea, general condition, and 
fever. Each parameter is assigned a value ranging from 0 
to 3, resulting in a total score of 20 points.

The RSV cases were obtained from a cohort of more 
than 3000 patients, over half of whom were infected 
with RSV. To select severe RSV cases, children with 
well-defined severity, such as acute bronchiolitis 
(lower respiratory tract infection [LRTI]), who have the 
highest ReSViNET score (> 15), who require mechanical 
ventilation, and who spend the most time in the pediatric 
intensive care unit (PICU) were chosen. The moderate/
mild group was formed by selecting children who only 

http://www.gendres.org
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required a few days of hospitalization (less than 5), did 
not require any kind of respiratory support, and had a 
ReSViNET score less than 8. This group of children was 
diagnosed with both LRTI and upper respiratory tract 
infections (URTIs).

Sample processing
DNA was isolated from saliva samples following the 
prepIT-L2L (DNAgenotek) protocol. The buccal swabs 
were incubated at 50 °C in a water incubator for at least 
one hour. The saliva sample was then transferred to a 
microcentrifuge tube and mixed with a 1/25 volume 
of PT-L2P. The mixture was vortexed and incubated on 
ice. After centrifugation, the supernatant was removed, 
and ethanol was added to allow DNA precipitation. 
Subsequently, an ethanol wash was performed, and the 
DNA pellet was then dissolved in TE solution. After 
isolation, the DNA sample concentration and quality 
were checked using common Nanodrop measurements 
and Qubit. Because DNA in buccal swabs tends to 
be more degraded than blood DNA, further DNA 
degradation control was performed to ensure the optimal 
DNA concentration for the subsequent steps. The whole 
Illumina methylation EPIC BeadChip experiment was 

carried out at the Genómica e Investigación Oncológica 
(GENYO) Center (Granada; Spain). The epigenome data 
were delivered to our group at Santiago de Compostela 
for subsequent bioinformatic and statistical analysis.

An appropriate volume of concentrated DNA was 
subjected to bisulphite conversion, a gold standard 
technique that allows the deamination of non-methylated 
cytosines into uracil and prevents methylation of 
the cytosine. After this treatment, the subsequent 
amplification recognized uracil as thymine and 
methylated cytosines as cytosines. The level of DNAm 
was then calculated by quantitative genotyping of C/T 
SNPs. After hybridization to the Illumina methylation 
EPIC BeadChip platform, the fluorescence intensity 
resulting from the incorporation of a nucleotide in 
the probe is translated into a level of DNAm for each 
CpG site. DNAm can be defined as beta- or M-values. 
Beta values range between 0 and 1, where 0 represents 
non-methylation, and 1 represents 100% methylation. 
Beta values are used for graphics due to their easy 
interpretability. M-values, on the other hand, are logit-
transformed beta values; homoscedasticity is generally 
assumed for these values, and they are preferentially used 
for linear statistical analysis.

Table 1 Clinical characteristics of the study participants

Wilcoxon and t tests were used for comparison

*Indicates the variables with a statistically significant difference (adjusted P-value) between the mild/moderate and severe groups

Mild/moderate (n = 8) Severe (n = 8) P-value Adjusted 
P-value

Age in years (mean)* 1.06 [0.67] 0.18 [0.11] 2.74 ×  10–03 8.23 ×  10−03

Sex 0.31 0.43

 Male 6 (75%) 3 (37%)

 Female 2 (25%) 5 (63%)

Self-reported ancestry 0.47 0.58

 South Europe 8 (100%) 6 (75%)

 North Africa – 2 (25%)

Personal medical history

 Previous medical episode 6 (75%) 2 (25%) 0.13 0.25

 Previous episode of bronquiolitis 5 (63%) – 0.03 0.06

Fever 5 (63%) 4 (50%) 1 1

Oxygen need 4 (50%) 8 (100%) 0.08 0.16

ReSViNET score* 7.60 [2.33] 15.86 [1.35] 2.77 ×  10–06 4.16 ×  10–05

Respiratory support

 Mechanical* – 8 (100%) 1.55 ×  10–04 5.83 ×  10–04

Suspected bacterial infection 3 (37%) 4 (50%) 0.24 0.40

PICU* – 8 (100%) 1.55 ×  10–04 5.83 ×  10–04

Antibiotic 4 (50%) 7 (88%) 0.28 0.42

Corticosteroids 5 (63%) 3 (37%) 0.62 0.66

Salbutamol 5 (63%) 3 (37%) 0.62 0.66
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Statistical analysis
Methylation data analysis
Before calculating the beta- and M-values, the raw 
IDAT data were subjected to different filtering processes 
and normalization steps, as previously described [15], 
to obtain high-quality data suitable for downstream 
analysis.

In the analysis of DNAm data derived from ‘bulk’ 
tissues such as blood or saliva, it is crucial to estimate 
the composition of different cell types within the tissue. 
Since the measured DNAm in ‘bulk’ tissues represents 
an average of the methylation levels from multiple 
cell types, there is a risk that the overall DNAm level 
is predominantly influenced by specific cell types. 
Moreover, when employing saliva as a biomarker 
identification tool, it is important to consider its extreme 
cellular heterogeneity. It has been demonstrated that 
buccal swabs used to collect saliva samples contain a 
greater proportion of epithelial cells than saliva, and 
this proportion is greater in children than in adults. 
Therefore, estimating the cell composition is an essential 
step in this type of analysis. Here, we used the Epidish R 
package to estimate the cell composition of the buccal 
swab samples. The hepidish function of the Epidish 
R package, allowing the use of two different DNAm 
references, was applied to the beta values to specifically 
estimate epithelial cells, fibroblasts, and total immune 
cells (neutrophils, eosinophils, monocytes, CD4+ and 
CD8+ T cells, B cells, and natural killer [NK] cells) [25, 
26].

Identification of RSV severity-associated differential 
methylation
The Limma package [27] was used to identify 
differentially methylated positions (DMPs), employing 
a model adjusted for age, sex, and cell estimation. To 
account for age, we included it as a covariate in the linear 
model formula. This allowed us to estimate the effect 
of other variables while controlling for the effect of age. 
Specifically, we created a design matrix including age as 
a covariate and fitted a linear model using the lmFit() 
function. A previous episode of bronchiolitis, which 
occurred in five out of eight mild/moderate patients, 
was considered in the statistical analysis to evaluate the 
effect of this clinical factor. The threshold for identifying 
DMPs was set at an adjusted P-value (false discovery rate 
or FDR) of < 0.01 and an absolute difference in DNAm 
between groups (delta beta) of > 0.10. Receiver operating 
characteristic (ROC) curve analyses were conducted to 
evaluate the diagnostic efficacy of the most significant 
candidate DMPs, and the determined area under the 
curve (AUC) was used to assess their discriminatory 
potential.

To identify differentially methylated regions (DMRs), 
the DMRcate package [28] was utilized with default 
parameters. The package employs Gaussian kernel 
smoothing to detect patterns of differential methylation 
independent of genomic annotation. In this study, a 
bandwidth (λ) of 1000 base pairs and a scaling factor 
(C) of 2 were used. Despite working with a sparse set of 
sites, the aim was to identify regions with multiple probe 
clusters (minimum of 3 CpGs per region) exhibiting 
substantial effect sizes and a minimum smoothed 
FDR < 0.01.

To establish a baseline sample of healthy controls 
(HC) for comparison, DNAm data from a cohort 
of healthy children were retrieved from the Gene 
Expression Omnibus (GEO) database (http:// www. 
ncbi. nlm. nih. gov/ geo/), under accession number 
GSE252169 [29]. This dataset was generated using the 
Illumina HumanMethylationEPIC BeadChip (GPL21145 
platform). For the analysis, we only retained methylated 
profiles of buccal DNA samples from healthy offspring of 
no-smokers pregnant women, collected at three different 
time points: birth (n = 27), 12  months (n = 14), and 
60 months (five years of age; n = 10).

The data were loaded into R using the GEOquery 
package. The raw IDAT files were preprocessed following 
the established protocol described previously. Beta and 
M values, were filtered to remove low-quality probes and 
normalized before proceeding with downstream analysis.

Pathway analysis
For gene set enrichment analysis, the methylGSA package 
[30] was applied, which uses the methylglm function.

This function extends GOglm by incorporating gene 
length as a covariate to adjust length bias in DNAm 
based on the number of CpGs. Pathway enrichment 
analysis was customized in two ways: considering all 
CpGs regardless of their gene group and focusing only 
on CpGs within the promoters based on the annotation 
in the “IlluminaHumanMethylationEPICanno.ilm10b4.
hg19regions” (TSS200, TSS1500, 5’UTR, 1stExon).

Weighted gene correlation network analysis (WGCNA)
The WGCNA package [31] was used to construct a 
signed weighted correlation network, using the top 
20% of positions with the highest median variance 
(approximately 120,000). To identify the gene module 
with the strongest association with RSV severity, a 
series of steps were performed. First, the soft threshold 
power was selected based on standard scale-free 
networks, and a power function was used to calculate 
all differential CpGs. The adjacency matrix was then 
transformed into a topological overlap matrix (TOM), 
and the corresponding dissimilarity matrix (1-TOM) was 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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calculated. The dynamic tree cut method was employed to 
hierarchically cluster CpGs and identify the module, with 
a minimum module size of 30, medium sensitivity for 
cluster splitting, and a dendrogram cut height threshold 
of 0.25 for module merging as module detection 
parameters. Unassigned CpG sites were clustered in the 
“grey” module, which was not considered for further 
analyses. Gene significance (GS) was computed to detect 
statistically significant associations between modules 
and phenotype, and module membership (MM) was also 
calculated as a measure of intramodular connectivity by 
correlating (using Pearson correlation) the methylation 
profile with the eigengene of a given module. The 
correlation between GS and MM was investigated, 
and the average absolute gene significance for all CpGs 
within a module was determined to identify the most 
important modules. The modules were named according 
to their most significant hub genes. Furthermore, the 
hub genes of the RSV severity-associated modules were 
extracted, and an overrepresentation analysis of the most 
important module related to the trait was performed 
using the ClusterProfiler R package [32] and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
as a reference to investigate its biological significance.

Pyrosequencing methylation analysis
The DNAm pattern of the identified DMPs was assessed 
by bisulfite-pyrosequencing in the discovery cohort, 
along with an independent validation cohort consisting of 
14 patients (7 severe, 7 mild/moderate). Genomic DNA 
was bisulfite-converted using the EZ DNA Methylation 
Kit (Zymo Research) following the manufacturer’s 
protocol. Bisulfite-treated DNA was amplified using the 
PyroMark PCR Kit (Qiagen) in a 25 µL reaction volume. 
Forward and reverse PCR primers were designed to 
target the same DMPs identified in the microarray 
analysis. Following PCR amplification, pyrosequencing 
assays were performed in duplicate (technical replicates) 
in sequential runs on the PyroMark Q24 system (Qiagen) 
using PyroMark Gold Q24 Reagents (Qiagen). The 
sequencing primers (Primer S) are detailed in Table  S1. 
Pyrosequencing was conducted by the Biomedical 
Research Institute of Murcia (IMIB).

The R statistical software (v. 4.2.2) was used to perform 
all the statistical analyses.

Results
Clinical characteristics of patients
Table  1 describes the clinical characteristics of the 
patients. Most of these characteristics exhibited 
similarities between the two severity groups. Clinical 
severity factors, such as the ReSViNET score, PICU 
admission, and the requirement for mechanical 

ventilation, were found to be significantly different 
between the two groups, as expected. Another statistically 
significant factor was age, with infants in the severe group 
being younger than those in the mild/moderate group. 
To investigate the association between the observed 
severity in the subjects and their “biological age” (i.e. the 
actual age of cells rather than the chronological one), 
we employed age predictors. Specifically, we utilized the 
Pediatric-Buccal-Epigenetic (PedBE) clock, an epigenetic 
age estimator designed for pediatric buccal swab samples 
[33]. Through this analysis, we found a strong correlation 
(rho, ρ = 0.96; P-value < 0.0001) between DNAm age and 
chronological age (see the scatterplot in Supplementary 
Fig.  1A). Consequently, we did not observe statistically 
significant differences in predicted biological age between 
the mild/moderate and severe groups, as depicted in 
Supplementary Fig.  1B. To mitigate confounding effects 
on the results, age was considered a covariate in all 
analyses.

Identification of differentially methylated positions 
and regions within the ZBTB38 and TRIM6‑TRIM34 genes
The estimation of cell composition did not reveal 
any significant differences between the two cohorts. 
Therefore, to minimize potential confounding factors, 
age was the only significant variable adjusted in the 
linear model. Among the 803,527 total DNA probes 
analyzed, we identified 461 DMPs (assuming a nominal 
P-value < 0.01 and an absolute difference in methylation 
level [Delta Beta] > 0.10) between infants with severe 
infection and those with only mild/moderate symptoms 
(Table S2). Among these positions, the majority (n = 339, 
73.5%) exhibited hypomethylation in the severe group 
compared to the mild/moderate group, while the 
remaining (n = 122, 26.5%) showed hypermethylation. 
These DMPs enabled the differentiation of patient 
methylation profiles into two distinct groups according 
to principal component analysis (PCA) and a heatmap 
(Fig.  1A, B). The main difference in the PCA results 
was from the first principal component (PC1), which 
accounted for 68.7% of the variation.

Notably, we also identified clusters of DMPs 
within promoter regions belonging to the same gene. 
Specifically, we found seven positions in the 5’UTR of the 
ZBTB38 gene (Table  2 and Fig.  2A) and three positions 
within the TSS200 region of the TRIM6-TRIM34 gene 
(Table 2 and Fig. 2B).

After adjusting the model for both age and 
bronchiolitis, we observed a decrease in the number of 
DMPs (n = 129; nominal P-value < 0.01). However, despite 
this reduction, the top DMPs remained consistent, 
particularly those located within the ZBTB38 (four 
positions) and TRIM6-TRIM34 (three positions) genes 
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Fig. 1 Differentially methylated positions distinguish infants with severe infection from those with mild to moderate symptoms. A PCA and B 
Heatmap of the significant DMPs (nominal P-value < 0.01 and delta beta > 0.10) between the severe and mild/moderate groups

Table 2 Cluster of differentially methylated positions (DMPs) within the TRIM6-TRIM34 and ZBTB38 genes

Delta Beta refers to the comparison of mild/moderate vs. severe patient groups
*1 DMPs after adjusting the model for age and previous episodes of bronchiolitis
*2 DMPs excluding children with previous episodes of bronchiolitis

CpGs Position Gene name Gene group Delta beta P‑value

cg14304349*1,2 chr11: 5617812 TRIM6-TRIM34 TSS200; 5’UTR 0.13 8.41 ×  10–04

cg15137954*1,2 chr11: 5618023 TRIM6-TRIM34 1stExon; 5’UTR 0.11 4.53 ×  10–05

cg22133704*1,2 chr11: 5617926 TRIM6-TRIM34 1stExon; 5’UTR 0.11 2.53 ×  10–04

cg23371833 chr3: 141133836 ZBTB38 5’UTR 0.17 7.40 ×  10–03

cg23967605 chr3: 141105198 ZBTB38 5’UTR 0.20 7.18 ×  10–03

cg03183447*1,2 chr3: 141105876 ZBTB38 5’UTR 0.22 1.25 ×  10–03

cg10394922*1,2 chr3: 141106189 ZBTB38 5’UTR 0.26 1.08 ×  10–03

cg17356452*1 chr3: 141105920 ZBTB38 5’UTR 0.27 1.18 ×  10–03

cg00527195 chr3: 141105273 ZBTB38 5’UTR 0.29 6.55 ×  10–03

cg25395158*1 chr3: 141105014 ZBTB38 5’UTR 0.31 1.27 ×  10–03

Fig. 2 Hypomethylation of the ZBTB38 and TRIM genes in the severe group. Boxplot and ROC curve of the cluster of CpGs observed within A 
ZBTB38 and B TRIM6-TRIM34 genes
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(Table  2). Additionally, removing patients who had 
experienced previous episodes of bronchiolitis from 
the statistical analysis resulted in a slightly different but 
even larger group of DMPs (n = 465). However, what is 
more relevant again is the remarkable consistency in the 
top DMPs and DMRs, pointing to ZBTB38 (with two 
positions) and TRIM6-TRIM34 (with five positions); 
(Table  2). This compelling consistency implies that 
previous episodes of bronchiolitis might not exert a 
widespread impact on DNAm across the entire mild/
moderate cohort, reinforcing the robustness of the 
findings.

To assess the discriminatory potential of DMPs 
from these genes (ZBTB38 and TRIM6-TRIM34) as 
biomarkers of RSV severity, we performed receiver  op
erating  characteristic (ROC) curve  analysis with area 
under the curve (AUC) calculations. The total ROC 
curve for the seven DMPs in the ZBTB38 gene yielded 
an AUC of 0.984 (0.941–1.000), while the ROC curve 
for the three DMPs within the TRIM6–TRIM34 region 
had an AUC of 0.906 (0.756–1.000). Furthermore, we 
utilized DMRcate to identify DMRs comprising at least 
three neighboring CpG sites associated with RSV severity 
in the same direction. This approach revealed eight 
regions with decreasing methylation and twelve regions 
with increasing methylation (Table  3). This analysis 
detected two highly statistically significant regions 
(Table  3). The most significant one (false discovery rate 
or  FDR = 2.83 ×  10–24) overlaps the TRIM6-TRIM34 
genes, and it comprises 11 highly correlated CpGs 

(Fig.  3A). The second most significant region (FDR of 
1.93 ×  10–11) overlaps with the ZBTB38 gene; it contains 
15 highly correlated CpGs (Fig. 3B). 

To verify the basal DNAm levels of the key genes 
identified in our analysis, we utilized the GEO dataset 
GSE252169. This dataset was selected for its availability 
of DNA buccal samples from healthy children at 
different time points. Specifically, we assessed the basal 
methylation profiles of the seven CpGs within ZBTB38 
and three CpGs within TRIM6-TRIM34, identified 
through DMPs and DMRs analysis. The GEO subset 
cohort used for this study included a group of 27 children 
who were not exposed to maternal smoking in utero, 
with DNA samples collected at birth, 12  months, and 
60  months. Normalized beta values for the 10 CpGs 
were extracted from this HC cohort. During preliminary 
analysis, two CpGs within ZBTB38 (cg25395158 and 
cg23967605) were removed due to data quality issues. 
The remaining five CpGs within ZBTB38 were analyzed 
for their methylation levels at the three time points in the 
HC cohort and these levels were then compared to the 
methylation profiles of these CpGs in children with RSV.

As illustrated in Fig.  4, the methylation levels of the 
five CpGs within ZBTB38 at birth in the HC cohort 
were similar to those observed in children with mild to 
moderate symptoms. However, as the children aged, 
methylation levels at these positions in HC cohort 
increased, demonstrating an opposite trend to that 
observed in the RSV cohort, where a decrease in 
DNAm was detected for children with severe infection 

Table 3 Differentially methylated regions (DMRs) associated with RSV severity

The top statistically significant regions are marked in bold. Delta Beta refers to the comparison of mild/moderate vs. severe patient groups. FDR: means here ‘minimum 
smoother FDR’

Position Overlapping genes n CpGs Delta beta FDR

chr2:47261254–47262234 TTC7A 3 0.15 3.19 ×  10–06

chr3:192289245–192289293 FGF12 3 0.12 9.27 ×  10–04

chr5:178576749–178577542 ADAMTS2 3 0.12 3.70 ×  10–03

chr19:41385865–41386507 CTC-490E21.12, CYP2A7 3 0.16 1.05 ×  10–05

chr1:149162219–149162518 4 0.12 4.90 ×  10–03

chr2:91932642–91933195 AC027612.4 4 0.12 5.96 ×  10–03

chr17:27456682–27456844 MYO18A 4 0.16 2.06 ×  10–04

chr4:674399–675936 MYL5, MFSD7 5 −0.16 2.58 ×  10–04

chr15:77816887–77818281 RP11-307C19.1 5 −0.11 2.09 ×  10–04

chr2:113990230–113995456 PAX8-AS1, PAX8 16 0.11 3.91 ×  10–03

chr11:5616177–5618408 TRIM6‑TRIM34, HBG2, AC015691.13 11 −0.11 2.83 × 10–24

chr2:162099304–162101506 AC009299.3, AC009299.2 7 0.12 1.16 ×  10–07

chr11:60414241–60414918 LINC00301 7 0.10 6.38 ×  10–06

chr1:149144161–149148312 RNU1-114P 18 0.12 2.18 ×  10–08

chr3:141102599–141107482 ZBTB38 15 −0.14 1.93 × 10–11

chr16:49732224–49733377 ZNF423 6 −0.10 1.25 ×  10–04
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when compared to those with only mild to moderate 
symptoms. The analysis of the three CpGs within TRIM6-
TRIM34 is presented in Supplementary Fig. 2.

Pathway analysis
We next investigated gene sets from Reactome, Gene 
Ontology (GO), and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways by considering (i) all CpGs 
and (ii) only CpGs within promoter regions. Remarkably, 
for both analyses, significant enrichment was observed in 
three Reactome pathways, three GO biological processes, 
and one KEGG pathway (Fig.  5). Notably, all three 
enriched pathways included olfactory signaling pathways, 
such as transduction and receptor activity.

Technical and biological validation of candidate 
methylation sites
Seven new patients with severe RSV infection and 
seven new children with mild to moderate symptoms 
were selected to evaluate the accuracy of DNAm results 
obtained from the Illumina EPIC BeadChip assay. Table 4 
presents the clinical characteristics of these subjects.

In this new validation cohort, the RESVINET score, 
need for respiratory support, and PICU admission 
remained significantly different between severe and 

mild/moderate cases, consistent with findings from 
the discovery cohort. To assess the reproducibility 
of the pyrosequencing assay, technical replicates of 
the ten DMPs were performed in both the discovery 
and validation cohorts. Each sample was analyzed 
in duplicate, and Pearson correlation analysis was 
conducted to evaluate the consistency between 
replicates (Fig.  6). The correlation between duplicates 
was extremely high in both cohorts, with correlation 
coefficients of 0.9977 and 0.9965 respectively and a highly 
significant P-value (< 2.16 ×  10−16). These results confirm 
the robustness and reliability of the pyrosequencing assay 
in accurately quantifying DNAm levels across different 
cohorts.

The DNAm levels of the 10 DMPs quantified by 
pyrosequencing in the discovery cohort were found to 
be significantly differentially methylated between severe 
and mild/moderate cases, fully aligning with the results 
from the Infinium assay (Fig.  7A, B). This confirms 
that the results of the Infinium data were successfully 
(technically) validated by pyrosequencing. Both technical 
replicates in the discovery cohort showed highly 
consistent methylation levels, further supporting the 
reproducibility of the assay.

Fig. 3 Differentially methylated regions distinguish infants with severe infection from those with mild to moderate symptoms. Top panel: DMR plot 
for the two most significant DMRs within the A ZBTB38 and B TRIM6-TRIM34 genes. DNA methylation patterns in severe and mild/moderate samples 
differed for most of the CpGs in the DMRs. In the figure, some beta value dots of the CpGs that constitute the DMRs overlap in the two groups 
with similar values. Bottom panel: pairwise correlation between CpG sites in DMRs in A ZBTB38 and B TRIM6-TRIM34 genes
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In the Validation cohort, six of the seven DMPs within 
the ZBTB38 gene remained significantly differentially 
methylated, while the cg23371833 site showed a similar 
trend of hypomethylation in the severe group, albeit 

without reaching statistical significance (Fig.  7A). The 
three DMPs within the TRIM6-TRIM34 locus did not 
reach statistical  significance in the validation cohort 
(Fig.  7B). However, when both cohorts were analyzed 

Fig. 4 DNA methylation levels of DMPs within ZBTB38 in RSV and HC cohorts. Boxplots showing DNA methylation levels at five DMPs within ZBTB38 
for the RSV cohort compared to the HC cohort from GEO. The HC cohort includes samples collected from children at three-time points: birth, 
12 months, and 60 months. The RSV cohort is represented by children with mild to moderate symptoms. Methylation levels at birth are similar 
to the methylation levels of RSV children with mild to moderate symptoms. For all the CpGs, the HC cohort shows an increase of methylation 
with age, in contrast to the RSV cohort, where hypomethylation is observed for children severely ill

Fig. 5 Pathway analysis revealed enrichment of pathways associated with olfactory signaling and activation. Bar plot representing the results 
of the enrichment pathway analysis conducted on all CpGs and specifically on CpGs located within the promoter regions using the methylglm 
approach. The results were obtained using the KEGG, Reactome and GO databases. The size of each bar along the x-axis indicates the number 
of genes associated with each pathway. Furthermore, false discovery rate (FDR) P-values are indicated
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Table 4 The clinical characteristics of mild/moderate and severe patients in the validation cohort

*Indicates the variables with a statistically significant difference (adjusted P-value) between the mild/moderate and severe groups

Mild/moderate (n = 7) Severe (n = 7) P-value Adjusted P-value

Age in years (mean)* 1.06 [1.23] 0.27 [0.30] 0.14 0.25

Sex 0.46 0.72

 Male 7 (100%) 5 (72%)

 Female – 2 (28%)

Self-reported ancestry 1 1

 South Europe 5 (72%) 5 (72%)

 North Africa 2 (28%) 2 (28%)

Personal medical history

 Previous medical episode 2 (28%) 1 (14%) 1 1

 Previous episode of bronquiolitis 2 (28%) 1 (14%) 1 1

Fever 4 (57%) 6 (86%) 0.56 0.78

Oxygen need 2 (28%) 7 (100%) 0.02 0.04

ReSViNET score* 6.14 [2.61] 16.43 [1.72] 4.31 ×  10–06 6.03 ×  10–05

Respiratory support

 Mechanical* – 7 (100%) 5.80 ×  10–04 2.71 ×  10–03

Suspected bacterial infection – – 1.00 1.00

PICU* – 7 (100%) 5.80 ×  10–04 2.71 ×  10–03

Antibiotic 1 (14%) 7 (100%) 0.01 0.01

Corticosteroids 2 (28%) 7 (100%) 0.02 0.04

Salbutamol 1 (14%) 7 (100%) 0.01 0.01

Fig. 6 High reproducibility of pyrosequencing technical replicates in discovery and validation cohorts. Correlation plots showing the Pearson 
correlation between technical replicates for each cohort analyzed using pyrosequencing. Both the Discovery and Validation cohorts demonstrate 
near-perfect correlation, with Pearson correlation coefficients close to 1 and a highly significant P-value (< 2.2 ×  10−16), confirming the high 
reproducibility of the analysis
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together (Table  5), all 10 DMPs reached statistical 
significance, reinforcing their role as robust prognostic 
biomarkers of RSV severity. These findings confirm the 
significant hypomethylation pattern observed in children 
with severe phenotype when compared to those with 
only mild to moderate symptoms, as  identified in the 
discovery stage and in the Infinium assay.

Co-methylated modules were constructed using 
the WGCNA R package with the top 20% of probes 
exhibiting the highest mean–variance (n = 114,806). 
After testing a set of candidate powers, a soft-
thresholding power of seven was selected based on 
the criterion of scale-free topology (Fig.  8A). The 

analysis revealed 32 modules, each containing at 
least 30 co-methylated genes, labeled by a color name 
(Fig.  8B). Applying a cutoff height threshold of 0.25 
for module merging resulted in the identification of 21 
modules. The module-trait relationships were tested 
by calculating the correlation between the modules 
and the severity phenotype (Fig.  8C), resulting in two 
significantly associated modules: RAB11FIP5 (green) 
and 2RX3 (magenta) (Fig. 8D). However, after adjusting 
for multiple testing, only the RAB11FIP5 module 
survived with a FDR P-value < 0.011. We found a strong 
correlation between GS and MM for this module, 

Fig. 7 Methylation levels of DMPs in discovery and validation cohorts. Boxplots showing the distribution of DNAm levels for the 10 DMPs analyzed 
using pyrosequencing in the Discovery and Validation cohorts and in each replicate. The analysis includes seven CpG sites in the ZBTB38 gene 
and three CpG sites in the TRIM6-TRIM34 gene, confirming the reproducibility of methylation patterns across independent cohorts



Page 12 of 18Pischedda et al. Epigenetics & Chromatin           (2025) 18:25 

indicating that the CpGs associated with RSV severity 
are also core elements of that module (Fig. 9A).

A strong negative correlation (R = −0.77) between the 
RAB11FIP5 module and the trait was observed, indicating 
hypomethylation in the severely ill group compared to the 
mild/moderate group. This finding is consistent with the 
results obtained for DMPs and DMRs, where lower levels of 
methylation were observed in the severe group than in the 
mild/moderate group. The heatmap and sample eigengene 
plots strongly support these results, demonstrating an 
overall lower methylation value in the cohort of patients 
with severe symptoms (Fig. 9B, C). Within the RAB11FIP5 
module, 153 CpGs of the previously identified 461 DMPs 

(33%) were included, of which 97 (21%) were considered 
hub CpGs (GS < −0.7 and MM > 0.8).

We identified a total of 1135 hub CpGs (hCpGs) within 
the RAB11FIP5 module (Table  S3). Upon examining the 
cluster of these hCpGs falling within specific (hub) genes, 
six hCpGs were observed within the CUX1 and ANK3 
genes, four within the ZBTB38, four in the body region of 
the SSBP3, and four within GLI3, FOXP1, and AFF3. The 
genes associated with the most significant module hCpGs 
were primarily involved in pathways related to the PI3K-
Akt, MAPK, Rap1, and Ras signaling pathways (Fig. 9D).

Table 5 Differential methylation analysis by bisulfite pyrosequencing for each cohort of the study

Gene—position Discovery cohort (n = 14) Validation cohort (n = 16) Total (n = 30)

P-value Delta beta P-value Delta beta P-value Delta Beta

R1 R2 R1 R2 R1 R2 R1 R2

ZBTB38 cg00527195 2.36 ×  10–05 7.72 ×  10–06 −0.37 −0.37 0.02 0.04 −0.22 −0.19 2.89 ×  10–11 −0.29

ZBTB38 cg03183447 1.31 ×  10–04 1.57 ×  10–04 −0.28 −0.28 5.70 ×  10−03 4.65 ×  10−03 −0.18 −0.19 1.29 ×  10–12 −0.23

ZBTB38 cg10394922 7.25 ×  10–05 1.07 ×  10–04 −0.33 −0.33 3.71 ×  10−03 5.10 ×  10−03 −0.20 −0.19 1.23 ×  10–12 −0.26

ZBTB38 cg17356452 1.11 ×  10–05 1.31 ×  10−05 −0.36 −0.36 0.04 0.04 −0.18 −0.17 8.90 ×  10–11 −0.27

ZBTB38 cg23371833 7.90 ×  10–06 1.31 ×  10–06 −0.17 −0.16 0.06 0.05 −0.10 −0.10 9.32 ×  10–10 −0.13

ZBTB38 cg23967605 7.82 ×  10−05 5.89 ×  10–05 −0.36 −0.36 8.40 ×  10–03 7.91 ×  10–03 −0.21 −0.22 3.36 ×  10–12 −0.28

ZBTB38 cg25395158 1.85 ×  10−04 1.66 ×  10−04 −0.35 −0.35 0.01 0.01 −0.20 −0.20 2.98 ×  10–11 −0.27

TRIM6-TRIM34 cg22133704 2.77 ×  10–02 2.41 ×  10–02 −0.11 −0.11 0.32 0.40 −0.03 −0.03 7.04 ×  10–04 −0.07

TRIM6-TRIM34 cg15137954 3.55 ×  10–02 4.38 ×  10–02 −0.12 −0.12 0.36 0.34 −0.04 −0.04 1.16 ×  10–03 −0.08

TRIM6-TRIM34 cg14304349 4.94 ×  10–02 7.56 ×  10–02 −0.09 −0.07 0.47 0.37 −0.01 −0.01 4.66 ×  10–03 −0.04

Fig. 8 Co-methylated modules associated with RSV severity. A Selection of the soft-thresholding power involved analyzing plots that depict 
the correlation between the soft-thresholding powers and two metrics: the scale-free fit index (left) and the mean connectivity (right). B Clustering 
dendrogram of probes, with dissimilarity based on topological overlap, together with assigned module colors. C Bar plot displaying the P-values 
from correlation tests between the module eigengenes and the RSV severity phenotype. The color of each module is defined by its hub gene. 
D Heatmap of Pearson correlation analysis of modules and the clinical traits associated with RSV severity. The rows represent the 21 module 
eigengenes, and the columns represent the phenotypes
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Discussion
We present novel evidence suggesting the potential 
involvement of DNAm in the severity of RSV disease 
among children younger than 2  years. To the best of 
our knowledge, this is the first attempt at using non-
invasive buccal swab samples to investigate methylation 
biomarkers associated with varying degrees of severity 
following RSV infection. Despite the lack of extensive 
research on DNAm changes specifically related to 
RSV infection in saliva, the existing scientific literature 
provides compelling evidence that saliva, which contains 
both epithelial and immune cells, serves as the primary 
site for viral infection and subsequent initiation of 
the immune response during acute respiratory viral 
infections.

In our study, multiple CpG sites were identified in the 
ZBTB38 and TRIM6-TRIM34 genes in severe vs mild/
moderate patients.

Upon analyzing the clinical history of the patients, 
we observed that severely ill children displayed more 
homogenous characteristics than those with mild/
moderate symptoms. This pattern is clearly visible in the 
PCA built on DMPs of donors, where the mild/moderate 
group displayed greater variability,than the severe group. 
This difference could be attributed to the challenge of 
classifying patients as mild/moderate due to the diverse 
symptoms and age range.

Through DMP and DMR analysis, we identified 
two genes that were significantly differentially 
hypomethylated between severely ill children and 
those with only mild/moderate symptoms: ZBTB38 
and TRIM6-TRIM34. Methylation patterns of both 
genes demonstrated high discriminatory power in 
distinguishing the two groups of infants, with ZBTB38 

having an AUC of 0.984 and TRIM-6-TRIM-34 having 
an AUC of 0.906. These findings were further validated 
through pyrosequencing analysis in both the discovery 
and a new validation cohort, reinforcing the reliability 
of these methylation markers as prognostic indicators of 
RSV severity. ZBTB38, which contains seven statistically 
significant CpG sites, is a protein-coding gene that 
contains both zinc finger and BTB domains. It functions 
as a transcription factor and exhibits a strong affinity 
for methylated sequences in  vitro, acting as a methyl-
CpG binding protein. Recent research [34] has shown 
that ZBTB38 is hypomethylated and transcriptionally 
upregulated in adaptive NK cells. It binds to methylated 
CpG sites within DNA and plays a role in the negative 
regulation of apoptosis. This gene has also been 
implicated in asthma [35] and chronic obstructive 
pulmonary disease (COPD) [36], two conditions 
closely related to airway viral infections. TRIM6 is a 
member of the tripartite motif (TRIM) family, which 
is a group of proteins that are involved in a wide range 
of biological processes and are associated with various 
pathological conditions, including developmental 
disorders, neurodegenerative diseases, viral infection, 
and carcinogenesis. The TRIM6 gene plays a critical 
role in both the type I interferon (IFN-I) production and 
signaling pathways [37], and its absence inhibits  IFN-I 
signaling leading to increased replication of interferon-
sensitive viruses. A recent study on Ebola revealed that 
the knockout of TRIM6 reduces the replication of the 
virus, suggesting the gene’s significance as a host cellular 
factor for viral replication [38]. Similarly, the TRIM34 
gene is significantly upregulated in response to IFN-I  in 
macrophages, [39], and  may limit HIV replication in 
a TRIM5-dependent manner [40]. In line with this 

Fig. 9 Strong negative correlation between the RAB11FIP5 module and RSV severity. A Plot of correlations between gene significance and module 
membership for the RAB11FIP5 module. Color coding is equivalent to module names. B Heatmap displaying the beta-values of the CpGs belonging 
to the RAB11FIP5 module. Additionally, the eigengene values of the samples are also shown. C Boxplot showing the variations in eigengene 
values of the samples from the RAB11FIP5 module between the severe and mild/moderate groups. D Dot plot showing the top KEGG pathways 
with an FDR < 0.01 associated with the genes in the RAB11FIP5 module. The size of each dot on the x-axis represents the number of genes 
associated with each pathway. Additionally, the color of each dot corresponds to the respective FDR P-values linked to the pathways
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evidence, the low methylation level observed in the 
DMPs belonging to this gene in severely ill children 
could suggest potential overexpression of this gene in this 
group of patients.

In our study, we observed that the DNAm levels at 
ZBTB38 gene in healthy controls were comparable to 
those in children with mild to moderate symptoms 
of RSV infection. This finding suggests that this gene 
exhibits a stable baseline methylation pattern under 
healthy conditions and mild RSV infection. The 
hypomethylation observed in severe RSV children for 
those CpGs implies that RSV infection may induce 
alterations in DNAm levels, particularly in those who 
develop severe manifestations of the disease. A general 
hypomethylation of CpGs in the whole blood of patients 
with bronchiolitis due to RSV or rhinovirus infections 
was confirmed by the study by Zhu et al. [16]. However, 
the specific DMPs identified in that study were not 
observed in our, possibly due to differences in tissue type.

Pathway analysis  revealed intriguing enrichment in 
olfactory signaling, particularly  the olfactory signaling 
pathway (R-HSA-381753), which is linked to genes 
differentially expressed during RSV infection [41]. 
Various animal models have demonstrated that certain 
viruses, such as Japanese encephalitis virus, influenza 
virus, and Herpes simplex virus, exploit the olfactory 
pathway to access the olfactory bulb (OB) and spread 
to other brain regions, including the hypothalamus 
and cortical areas [42]. While the mechanisms of RSV 
entry and spread in the CNS are not fully understood, a 
mouse model study in 2013 [43] demonstrated neuro-
invasive ability of RSV through the olfactory pathway. 
More recently, Bryche and colleagues [44] detected RSV 
infection and replication in olfactory sensory neurons, 
leading to inflammation in the OB.

Through weighted correlation network analysis, a set 
of co-methylated positions with a significant negative 
correlation with severe RSV infection was identified. 
This suggests that the CpG blocks associated with these 
positions are hypomethylated, suggesting potential 
overactivation of these genes in severely infected 
children. The most important hub gene of the most 
significant module was RAB11FIP5, to which the hub 
position cg13662225 belongs. It has been reported 
that RAB11FIP plays a crucial role in regulating viral 
infections. For instance, RAB11FIP3 seems indispensable 
for the formation of filamentous virions [45]. RAB11FIP1 
and RAB11FIP2 regulate the release of RSV [46], while 
RAB11FIP4 is essential for the movement of components 
related to cytomegalovirus (HCMV) [47]. The role of 
RAB11FIP5 in viral infection remained unclear until a 
recent study which [48] showed its correrlation to NK cell 

dysfunction, and the productionof broadly neutralizing 
antibodies (bnAbs) in HIV-1-infected individuals.

Among the other hCpGs (RAB11FIP5 module), four 
were located within the DMR of the previously described 
ZBTB38 gene. Additionally, four hub CpGs were found 
within the SSBP3 gene, whose expression tends to 
be upregulated in patients with RSV [49]. Another 
interesting gene is GLI3, which contains four hub CpGs 
that play essential roles in lung development and in the 
regulation of innate immune cells [50]. Furthermore, a 
cluster of hub CpGs was found within the ANK3 gene, 
encoding proteins that have been detected in various 
types of epithelial cells, bone marrow macrophages, and 
neurons. The upregulated expression of the ANK3 protein 
was reported [50] in alveolar macrophages of individuals 
with COPD, suggesting its potential involvement in 
lung function decline and COPD pathogenesis in at-risk 
smokers. Another gene associated with lung development 
regulation is FOXP1, which contains four CpGs that may 
contribute to the development of chronic lung diseases 
[51].

Further investigation of the RAB11FIP5 module 
revealed that the genes associated with the hub positions 
primarily participate in the PI3K-Akt signaling pathway. 
This pathway has been shown to enhance viral entry into 
host cells [52], even if, recent studies have proposed that 
it can serve as a “proviral” kinase upon activation but 
plays a role in the host’s antiviral response. The second 
most significant pathway was related to MAPK signaling, 
which is generally activated by various chemical and 
physical stimuli, including cytokines, hormones, growth 
factors, pathogens (including viruses), etc. [53]. The effect 
of MAPK signaling on virus replication varies depending 
on the virus in question, as it can either support or 
downregulate replication [54]. Furthermore, viruses 
can exploit independently activated MAPK signaling 
pathways to facilitate their own replication. These two top 
pathways identified through co-methylation analysis—
PI3K-Akt and MAPK—are consistent with findings from 
a recent RNA-based epigenetic study by Zhu et al. [55], 
which linked nasal miRNAs during severe bronchiolitis 
to asthma-related pathways, including PI3K-Akt. These 
pathways are not only involved in acute viral responses 
but also play a key role in shaping long-term respiratory 
outcomes such as asthma and COPD.

In line with these findings, it is important to consider 
that, in addition to RSV infection, these infants may have 
a high abundance of pathogenic bacteria in their airways. 
This interplay between respiratory viral infections 
and microbiome could significantly impact long-term 
outcomes such as asthma. As highlighted by this recent 
study of bronchiolitis in infants (56) understanding how 
these factors interact will be crucial for future research in 
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elucidating the complex mechanisms leading to chronic 
respiratory diseases.

Conclusions
The present study represents the first attempt to 
investigate the role of DNAm in young children with 
different severities of RSV infection using non-invasive 
samples. The findings of this study provide compelling 
evidence indicating that DNAm may indeed contribute 
to the severity of RSV disease in young children at 
the local level. The consistency of validation results 
highlights the robustness of the identified methylation 
signatures and their potential clinical utility in predicting 
disease severity. However, further large-scale studies are 
necessary to confirm these findings.

It is important to note that while our results indicate 
a correlation between RSV severity and DNAm changes, 
causation cannot be definitively established from this 
study alone. It remains uncertain whether the observed 
methylation changes were already present in the 
group of children and predisposed them to severe RSV 
infection or if RSV infection itself directly influenced 
their methylation levels. Future research should focus 
on longitudinal studies to elucidate the mechanisms 
underlying these methylation changes and their role in 
RSV pathogenesis.

Limitations of the study
One of the most important limitations of the present 
study is the small sample size of both the mild/moderate 
and severe groups. This limited size, combined with 
the extensive number of CpGs examined, increases the 
likelihood that some DNA probes did not reach the 
threshold for statistical significance at the minimum FDR 
level.

Another limitation pertains to age-related differences 
and their potential implications, as well as disparities 
between cohorts regarding previous episodes of 
bronchiolitis and other medical histories. We attempted 
to address these age variations through appropriate 
statistical analyses and by adjusting for age in all group 
comparisons. Future studies may benefit from more 
nuanced stratification of age cohorts or longitudinal 
analyses to better elucidate age-specific risk factors and 
outcomes. Additionally, it would be valuable to explore 
differential sex differences in disease severity in future 
studies using larger cohorts of both patients and controls.

Furthermore, the impact of previous episodes of 
bronchiolitis and other medical history on our study 
results warrants consideration. In this case, future 
analysis with a more homogeneous mild/moderate 

cohort is required to exclude any implications of previous 
events that could be implicated in DNAm changes.

Another limitation of the study is the unknown exact 
duration of symptoms before sample collection, which is 
a common issue in paedriatic research studies.

Despite these limitations, our findings could be 
validated in an independent cohort, and include 
promising candidate biomarkers related to RSV 
infection and severity and shed further light on the 
local mechanisms that might contribute to the severe 
phenotype, providing good proof of principle for non-
invasive saliva samples.
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